3,109 research outputs found

    SMAUG: a new technique for the deprojection of galaxy clusters

    Full text link
    This paper presents a new technique for reconstructing the spatial distributions of hydrogen, temperature and metal abundance of a galaxy cluster. These quantities are worked out from the X-ray spectrum, modeled starting from few analytical functions describing their spatial distributions. These functions depend upon some parameters, determined by fitting the model to the observed spectrum. We have implemented this technique as a new model in the XSPEC software analysis package. We describe the details of the method, and apply it to work out the structure of the cluster A1795. We combine the observation of three satellites, exploiting the high spatial resolution of Chandra for the cluster core, the wide collecting area of XMM-Newton for the intermediate regions and the large field of view of Beppo-SAX for the outer regions. We also test the validity and precision of our method by i) comparing its results with those from a geometrical deprojection, ii) examining the spectral residuals at different radii of the cluster and iii) reprojecting the unfolded profiles and comparing them directly to the measured quantities. Our analytical method yields the parameters defining the spatial functions directly from the spectra. Their explicit knowledge allows a straightforward derivation of other indirect physical quantities like the gravitating mass, as well as a fast and easy estimate of the profiles uncertainties.Comment: 24 pages, 11 figures, 3 tables; emulateapj; accepted for publication in the Astrophysical Journa

    Determining Real Permittivity from Fresnel Coefficients in GNSS-R

    Get PDF
    Global Navigation Satellite System Reflectometry (GNSS-R) can be used to derive information about the composition or the properties of ground surfaces, by analyzing signals emitted by GNSS satellites and reflected from the ground. If the received power is measured with linearly polarized antennas, under the condition of smooth surface, the reflected signal is proportional to the modulus of the perpendicular and parallel polarization Fresnel coefficients, which depend on the incidence angle θ, and on the dielectric constant ε of the soil. In general, ε is a complex number; for non-dispersive soils, the imaginary part of ε can be neglected, and a real value of ε is sought. We solve the real valued problem explicitly giving formulas that can be used to determine the dielectric constant ε and we compare the analytical solution with experimental data in the case of sand soil

    Upgrades of beam diagnostics in support of emittance-exchange experiments at the Fermilab A0 photoinjector

    Get PDF
    The possibility of using electron beam phase space manipulations to support a free-electron laser accelerator design optimization has motivated our research. An on-going program demonstrating the exchange of transverse horizontal and longitudinal emittances at the Fermilab A0 photoinjector has benefited recently from the upgrade of several of the key diagnostics stations. Accurate measurements of these properties upstream and downstream of the exchanger beamline are needed. Improvements in the screen resolution term and reduced impact of the optical system's depth-of-focus by using YAG:Ce single crystals normal to the beam direction will be described. The requirement to measure small energy spreads (<10 keV) in the spectrometer and the exchange process which resulted in bunch lengths less than 500 fs led to other diagnostics performance adjustments and upgrades as well. A longitudinal to transverse exchange example is also reported.Comment: 16 p

    Radiative cooling, heating and thermal conduction in M87

    Full text link
    The crisis of the standard cooling flow model brought about by Chandra and XMM-Newton observations of galaxy clusters, has led to the development of several models which explore different heating processes in order to assess if they can quench the cooling flow. Among the most appealing mechanisms are thermal conduction and heating through buoyant gas deposited in the ICM by AGNs. We combine Virgo/M87 observations of three satellites (Chandra, XMM-Newton and Beppo-SAX) to inspect the dynamics of the ICM in the center of the cluster. Using the spectral deprojection technique, we derive the physical quantities describing the ICM and determine the extra-heating needed to balance the cooling flow assuming that thermal conduction operates at a fixed fraction of the Spitzer value. We assume that the extra-heating is due to buoyant gas and we fit the data using the model developed by Ruszkowski and Begelman (2002). We derive a scale radius for the model of 5\sim 5 kpc, which is comparable with the M87 AGN jet extension, and a required luminosity of the AGN of a few×1042few \times 10^{42} erg s1^{-1}, which is comparable to the observed AGN luminosity. We discuss a scenario where the buoyant bubbles are filled of relativistic particles and magnetic field responsible for the radio emission in M87. The AGN is supposed to be intermittent and to inject populations of buoyant bubbles through a succession of outbursts. We also study the X-ray cool component detected in the radio lobes and suggest that it is structured in blobs which are tied to the radio buoyant bubbles.Comment: 25 pages, 10 figures and 2 tables. Accepted for publication in Ap

    A constrained scheme for Einstein equations based on Dirac gauge and spherical coordinates

    Full text link
    We propose a new formulation for 3+1 numerical relativity, based on a constrained scheme and a generalization of Dirac gauge to spherical coordinates. This is made possible thanks to the introduction of a flat 3-metric on the spatial hypersurfaces t=const, which corresponds to the asymptotic structure of the physical 3-metric induced by the spacetime metric. Thanks to the joint use of Dirac gauge, maximal slicing and spherical components of tensor fields, the ten Einstein equations are reduced to a system of five quasi-linear elliptic equations (including the Hamiltonian and momentum constraints) coupled to two quasi-linear scalar wave equations. The remaining three degrees of freedom are fixed by the Dirac gauge. Indeed this gauge allows a direct computation of the spherical components of the conformal metric from the two scalar potentials which obey the wave equations. We present some numerical evolution of 3-D gravitational wave spacetimes which demonstrates the stability of the proposed scheme.Comment: Difference w.r.t. v1: Major revision: improved presentation of the tensor wave equation and addition of the first results from a numerical implementation; w.r.t. v2: Minor changes: improved conclusion and figures; w.r.t. v3: Minors changes, 1 figure added; 25 pages, 13 figures, REVTeX, accepted for publication in Phys. Rev.

    Statistical properties of random matrix product states

    Full text link
    We study the set of random matrix product states (RMPS) introduced in arXiv:0908.3877 as a tool to explore foundational aspects of quantum statistical mechanics. In the present work, we provide an accurate numerical and analytical investigation of the properties of RMPS. We calculate the average state of the ensemble in the non-homogeneous case, and numerically check the validity of this result. We also suggest using RMPS as a tool to approximate properties of general quantum random states. The numerical simulations presented here support the accuracy and efficiency of this approximation. These results suggest that any generalized canonical state can be approximated with high probability by the reduced density matrix of a random MPS, if the average MPS coincide with the associated microcanonical ensemble.Comment: 12 pages, 17 figures; published versio

    Disentangling Vacancy Oxidation on Metallicity-Sorted Carbon Nanotubes

    Full text link
    Pristine single-walled carbon nanotubes (SWCNTs) are rather inert to O2_2 and N2_2, which for low doses chemisorb only on defect sites or vacancies of the SWCNTs at the ppm level. However, very low doping has a major effect on the electronic properties and conductivity of the SWCNTs. Already at low O2_2 doses (80 L), the X-ray photoelectron spectroscopy (XPS) O 1s signal becomes saturated, indicating nearly all the SWCNT's vacancies have been oxidized. As a result, probing vacancy oxidation on SWCNTs via XPS yields spectra with rather low signal-to-noise ratios, even for metallicity-sorted SWCNTs. We show that, even under these conditions, the first principles density functional theory calculated Kohn-Sham O 1s binding energies may be used to assign the XPS O 1s spectra for oxidized vacancies on SWCNTs into its individual components. This allows one to determine the specific functional groups or bonding environments measured. We find the XPS O 1s signal is mostly due to three O-containing functional groups on SWCNT vacancies: epoxy (C2_2>>O), carbonyl (C2_2>>C==O), and ketene (C==C==O), as ordered by abundance. Upon oxidation of nearly all the SWCNT's vacancies, the central peak's intensity for the metallic SWCNT sample is 60\% greater than for the semiconducting SWCNT sample. This suggests a greater abundance of O-containing defect structures on the metallic SWCNT sample. For both metallic and semiconducting SWCNTs, we find O2_2 does not contribute to the measured XPS O~1s spectra

    Spin networks, quantum automata and link invariants

    Full text link
    The spin network simulator model represents a bridge between (generalized) circuit schemes for standard quantum computation and approaches based on notions from Topological Quantum Field Theories (TQFT). More precisely, when working with purely discrete unitary gates, the simulator is naturally modelled as families of quantum automata which in turn represent discrete versions of topological quantum computation models. Such a quantum combinatorial scheme, which essentially encodes SU(2) Racah--Wigner algebra and its braided counterpart, is particularly suitable to address problems in topology and group theory and we discuss here a finite states--quantum automaton able to accept the language of braid group in view of applications to the problem of estimating link polynomials in Chern--Simons field theory.Comment: LateX,19 pages; to appear in the Proc. of "Constrained Dynamics and Quantum Gravity (QG05), Cala Gonone (Italy) September 12-16 200

    Early versus late conversion from immediate to prolonged-release tacrolimus after renal transplantation: Clinical effects and treatment costs

    Get PDF
    Introduction. Prolonged-release tacrolimus (PR-TAC) was associated with improved renal function after transplantation when compared to immediate-release tacrolimus (IR-TAC) although evidence is still scarce. This study aimed to compare clinical outcomes and treatment costs in patients who converted from IR-TAC to PR-TAC during the first year after renal transplantation (RT) (early converters [EC]) or after that period (late converters [LC]). Methods. We performed a retrospective study including 79 patients (EC, 39; LC, 41) which were followed up over 60 months. A mixed-effects approach was used to investigate the differences between both groups regarding renal and metabolic outcomes as well as treatment costs. Results. The median time from RT to conversion was 3 months for EC and 25 months for LC. For both EC and LC, a significant increase in estimated glomerular filtration rate was observed after conversion (5.2 and 4.9 mL/min per 1.73 m 2 , respectively). During the first year after RT, EC presented a higher estimated glomerular filtration rate and inferior tacrolimus trough levels when compared to LC, with higher mean treatment costs associated. However, thereafter, these outcomes were similar between groups over the remaining time. At the end of follow-up, no significant differences were found regarding allograft acute rejection (2.6% and 2.4%), new-onset diabetes (15.7% vs 12.2%) or cardiovascular events (5.2% vs 7.3%). Conclusions. There was a significant benefit on renal function after conversion from IR-TAC to PR-TAC. During the first year after RT, EC presented improved renal function, but higher treatment costs. None of these differences persisted at the end of follow-up.This work was financed by Fundo Europeu de Desenvolvimento Regional (FEDER) funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia/ Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project "Institute for Research and Innovation in Health Sciences" (POCI-01-0145-FEDER-007274)

    Fidelity in topological quantum phases of matter

    Full text link
    Quantum phase transitions that take place between two distinct topological phases remain an unexplored area for the applicability of the fidelity approach. Here, we apply this method to spin systems in two and three dimensions and show that the fidelity susceptibility can be used to determine the boundary between different topological phases particular to these models, while at the same time offering information about the critical exponent of the correlation length. The success of this approach relies on its independence on local order parameters or breaking symmetry mechanisms, with which non-topological phases are usually characterized. We also consider a topological insulator/superconducting phase transition in three dimensions and point out the relevant features of fidelity susceptibility at the boundary between these phases.Comment: 7 pages, 7 figures; added references; to appear on PR
    corecore