13 research outputs found

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Anaerobic effluent disinfection using ozone: Byproducts formation

    No full text
    This research was aimed at studying oxidation processes, coliform inactivation effectiveness and disinfection byproducts (DBPs) associated with the disinfection of anaerobic sanitary wastewater effluent with ozone applied at doses of 5.0, 8.0 and 10.0mg O(3)L(-1) for contact times of 5, 10 and 15 min. The wastewater used in this research was generated by the wastewater treatment plant (WWTP), University of São Paulo - Brazil. The total coliform inactivation range was 2.00-4.06 log(10), and the inactivation range for Escherichia coli was 2.41-4.65 log(10). Mean chemical oxygen demand (COD) reductions were 37.6%, 48.8% and 42.4% for doses of 5.0, 8.0 and 10.0mg O(3)L(-1), respectively. Aldehyde formation varied with dosage only when the ozone dose was increased from 5.0 to 8.0mg O(3)L(-1) for acetaldehyde and from 5.0 to 8.0 and from 8.0 to 10.0mg O(3)L(-1) for glyoxa

    Anaerobic-aerobic baffled reactor treating real municipal wastewater in a low income community

    No full text
    Inadequate sanitation and poor infrastructure for waterborne sanitation are common in many developing countries. The anaerobic/aerobic baffled reactor (AABR) is a sustainable option for water sanitation in developing countries. In the present study, a 2.50 m AABR reactor working with real municipal wastewater was monitored. Four sequenced chambers, the first three being anaerobic and the fourth aerobic composed the AABR reactor. AABR efficiency and performance were examined during four different periods. Organic and hydraulic load increases were adequately absorbed, provoking no instability in the system and demonstrating good configuration for absorbing organic impacts. The AABR had a promising effect on COD removal, which led removal values of total COD up to 74%, and total suspended solid (TSS) removal up to 79%. Regardless of the value on entering, the pH from the reactor effluent remained close to 7 during the four periods, indicating good stability in the reactor.Peer Reviewe

    Metal fractionation in sludge from sewage UASB treatment

    No full text
    This study evaluates the trace metal composition and fractionation in sludge samples from anaerobic sewage treatment plants from six cities in Brazil. Ten metals were evaluated: Ni, Mn, Se, Co, Fe, Zn, K, Cu, Pb and Cr. Specific methanogenic activity of the sludge was also evaluated using acetic acid as the substrate. Among the essential trace metals for anaerobic digestion, Se, Zn, Ni and Fe were found at a high percentage in the organic matter/sulfide fraction in all sludge samples analyzed. These metals are less available for microorganisms than other metals, i.e., Co and K, which were present in significant amounts in the exchangeable and carbonate fractions. Cu is not typically reported as an essential metal but as a possible inhibitor. One of the samples showed a total Cu concentration close to the maximal amount allowed for reuse as fertilizer. Among the non-essential trace metals, Pb was present in all sludge samples at similar low concentrations and was primarily present in the residual fraction, demonstrating very low availability. Cr was found at low concentrations in all sludge samples, except for the sludge from STP5; interestingly, this sludge presented the lowest specific methanogenic activity, indicating possible Cr toxicity.This research was funded by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq – Processes 406751/2013-7, 150521/2014-6 and 150641/2015-0)Peer Reviewe

    From toilet to agriculture: Fertilization with microalgal biomass from wastewater impacts the soil and rhizosphere active microbiomes, greenhouse gas emissions and plant growth

    No full text
    Human activities are pushing earth beyond its natural limits, so recycling nutrients is mandatory. Microalgae are highly effective in nutrient recovery and have strong potential as a sustainable wastewater treatment technology. Here, nutrients from black water (toilet wastewater) were recovered as microalgal biomass, which was dried and assessed as a fertilizer in pot experiments compared with inorganic fertilizer. We deciphered the effects of microalgal biomass as a biofertilizer on plant growth and quality and the biological processes linked to greenhouse gas (GHG) emissions. In addition, we elucidated the assembly of the active microbiome in bulk soil and rhizosphere during barley development. Microalgal biomass application and inorganic fertilizer (NPK) resulted in similar plant productivity (16.6 g pot−1). Cumulative nitrous oxide (N2O) emissions were 4.6-fold higher in the treatment amended with microalgal fertilizer (3.1% of applied N) than that with inorganic fertilizer (0.5% of applied N). Nitrification by bacteria was likely the main pathway responsible for N2O emissions (R2 = 0.7, p ≤ 0.001). The application of nitrogen fertilizers affected the structures of both the active bacterial and protozoan communities, but these effects were less obvious than the strong plant effect, as the recruited microbiota varied among different plant developmental stages. Both treatments enriched similar bacterial and protozoan taxonomic orders but with different distributions through time across the plant developmental stages. Furthermore, the bacterial community showed a clear trend of resilience from the beginning of the experiment until harvest, which was not observed for protozoa. Our results indicate that the use of microalgal biomass as a fertilizer is a viable option for recycling nutrients from wastewater into plant production
    corecore