573 research outputs found

    Electrolytic Treatment And Biosurfactants Applied To The Conservation Of Eugenia Uniflora Fruit

    Get PDF
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Microorganisms are the primary responsible for food poisoning and food spoilage. The purpose of this study was to evaluate different fruit washing methods with tap water, electrolyzed water and rhamnolipids solution produced by Pseudomonas aeruginosa LBI, in order to inhibit microbial growth. The tested organism was Eugenia uniflora. The fruits were washed and periodically inoculated into culture media to evaluate and count the colonies on the fruit surface. It was also observed the deterioration level of the fruits after each treatment. The results showed that treatment with rhamnolipids were the most efficient, inhibiting the growth of fungi and bacteria. The electrolyzed water proved to be very efficient in bacterial inhibition at the initial time, but in the final time it did not present any inhibitory effect. The electrolyzed water was also not effective in eliminating fungus. Washing with tap water was the less efficient treatment of all. The only treatment that showed an increased durability has been with rhamnolipids, increasing shelf life by up to two days. Thus rhamnolipids are the most recommended method for fruits sanitation. © 2016, Sociedade Brasileira de Ciencia e Tecnologia de Alimentos, SBCTA. All rights reserved.363456460CAPES, Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Quasi particle interference of heavy fermions in resonant x ray scattering

    Get PDF
    Resonant x ray scattering RXS has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of RXS experiments remains theoretically challenging because of the complexity of the RXS cross section. Central to this debate is the recent proposal that impurity induced Friedel oscillations, akin to quasi particle interference signals observed with a scanning tunneling microscope STM , can lead to scattering peaks in RXS experiments. The possibility that quasi particle properties can be probed in RXSmeasurements opens up a new avenue to study the bulk band structure ofmaterials with the orbital and element selectivity provided by RXS. We test these ideas by combining RXS and STM measurements of the heavy fermion compound CeMIn5 M Co, Rh . Temperature and doping dependent RXSmeasurements at the Ce M4 edge show abroad scattering enhancement that correlateswith the appearance of heavy f electron bands in these compounds. The scattering enhancement is consistentwith themeasured quasi particle interference signal in the STMmeasurements, indicating that the quasi particle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS techniqu

    Testing the self-cleaning properties of a coordination polymer surface

    Get PDF
    It is well established that self-cleaning can be related to the hydrophobic or hydrophilic nature of a surface. Using adsorption chromatography, molecular simulations and wetting dynamics measurements, the self-cleaning properties of a new, strongly water resistant and hydrophilic cystine-containing coordination polymer (CP) were tested. Adsorption isotherms of n-octane and methanol were determined in the range of 313–343 K. Next the isosteric enthalpy of adsorption and the change in adsorption entropy were calculated to explain higher adsorption of methanol than n-butane. Performed chromatographic tests, molecular dynamics simulations and wetting dynamics experiments additionally prove that the Zn(Cys)2 CP is a promising material for the application in the preperation of self-cleaning surfaces or coatings

    Comparison Between Conventional Intervention and Non-immersive Virtual Reality in the Rehabilitation of Individuals in an Inpatient Unit for the Treatment of COVID-19: A Study Protocol for a Randomized Controlled Crossover Trial.

    Get PDF
    Background: The new human coronavirus that leads to COVID-19 (coronavirus disease 2019) has spread rapidly around the world and has a high degree of lethality. In more severe cases, patients remain hospitalized for several days under treatment of the health team. Thus, it is important to develop and use technologies with the aim to strengthen conventional therapy by encouraging movement, physical activity, and improving cardiorespiratory fitness for patients. In this sense, therapies for exposure to virtual reality (VR) are promising and have been shown to be an adequate and equivalent alternative to conventional exercise programs. Aim: This is a study protocol with the aim of comparing the conventional physical therapy intervention with the use of a non-immersive VR software during COVID-19 hospitalization. Methods: Fifty patients hospitalized with confirmed diagnosis of COVID-19 will be divided in two groups under physiotherapy treatment using conventional or VR intervention: Group A: participants with COVID-19 will start the first day of the protocol with VR tasks in the morning and then in the second period, in the afternoon, will perform the conventional exercises (n = 25) and Group B: participants with COVID-19 will start the first day with conventional exercises in the morning and in the second period, in the afternoon, will perform activity with VR (n = 25). All participants will be evaluated with different motor and physiologic scales before and after the treatment to measure improvements. Conclusion: Considering the importance of benefits from physical activity during hospitalization, VR software shows promise as a potential mechanism for improving physical activity. The results of this study may provide new insights into hospital rehabilitation. Trial Registration: ClinicalTrials.gov, identifier: NCT04537858. Registered on 01 September 2020
    corecore