6,628 research outputs found

    Explaining global increases in water use efficiency: why have we overestimated responses to rising atmospheric CO(2) in natural forest ecosystems?

    Get PDF
    BackgroundThe analysis of tree-ring carbon isotope composition (δ(13)C) has been widely used to estimate spatio-temporal variations in intrinsic water use efficiency (iWUE) of tree species. Numerous studies have reported widespread increases in iWUE coinciding with rising atmospheric CO(2) over the past century. While this could represent a coherent global response, the fact that increases of similar magnitude were observed across biomes with no apparent effect on tree growth raises the question of whether iWUE calculations reflect actual physiological responses to elevated CO(2) levels.Methodology/resultsHere we use Monte Carlo simulations to test if an artifact of calculation could explain observed increases in iWUE. We show that highly significant positive relationships between iWUE and CO(2) occur even when simulated data (randomized δ(13)C values spanning the observed range) are used in place of actual tree-ring δ(13)C measurements. From simulated data sets we calculated non-physiological changes in iWUE from 1900 to present and across a 4000 m altitudinal range. This generated results strikingly similar to those reported in recent studies encompassing 22 species from tropical, subtropical, temperate, boreal and mediterranean ecosystems. Only 6 of 49 surveyed case studies showed increases in iWUE significantly higher than predicted from random values.Conclusions/significanceOur results reveal that increases in iWUE estimated from tree-ring δ(13)C occur independently of changes in (13)C discrimination that characterize physiological responses to elevated CO(2). Due to a correlation with CO(2) concentration, which is used as an independent factor in the iWUE calculation, any tree-ring δ(13)C data set would inevitably generate increasing iWUE over time. Therefore, although consistent, previously reported trends in iWUE do not necessarily reflect a coherent global response to rising atmospheric CO(2). We discuss the significance of these findings and suggest ways to distinguish real from artificial responses in future studies

    Integrating effects of species composition and soil properties to predict shifts in montane forest carbon-water relations.

    Get PDF
    This study was designed to address a major source of uncertainty pertaining to coupled carbon-water cycles in montane forest ecosystems. The Sierra Nevada of California was used as a model system to investigate connections between the physiological performance of trees and landscape patterns of forest carbon and water use. The intrinsic water-use efficiency (iWUE)-an index of CO2 fixed per unit of potential water lost via transpiration-of nine dominant species was determined in replicated transects along an ∼1,500-m elevation gradient, spanning a broad range of climatic conditions and soils derived from three different parent materials. Stable isotope ratios of carbon and oxygen measured at the leaf level were combined with field-based and remotely sensed metrics of stand productivity, revealing that variation in iWUE depends primarily on leaf traits (∼24% of the variability), followed by stand productivity (∼16% of the variability), climatic regime (∼13% of the variability), and soil development (∼12% of the variability). Significant interactions between species composition and soil properties proved useful to predict changes in forest carbon-water relations. On the basis of observed shifts in tree species composition, ongoing since the 1950s and intensified in recent years, an increase in water loss through transpiration (ranging from 10 to 60% depending on parent material) is now expected in mixed conifer forests throughout the region

    Iron: the forgotten driver of nitrous oxide production in agricultural soil.

    Get PDF
    In response to rising interest over the years, many experiments and several models have been devised to understand emission of nitrous oxide (N2O) from agricultural soils. Notably absent from almost all of this discussion is iron, even though its role in both chemical and biochemical reactions that generate N2O was recognized well before research on N2O emission began to accelerate. We revisited iron by exploring its importance alongside other soil properties commonly believed to control N2O production in agricultural systems. A set of soils from California's main agricultural regions was used to observe N2O emission under conditions representative of typical field scenarios. Results of multivariate analysis showed that in five of the twelve different conditions studied, iron ranked higher than any other intrinsic soil property in explaining observed emissions across soils. Upcoming studies stand to gain valuable information by considering iron among the drivers of N2O emission, expanding the current framework to include coupling between biotic and abiotic reactions

    Carbon dioxide level and form of soil nitrogen regulate assimilation of atmospheric ammonia in young trees.

    Get PDF
    The influence of carbon dioxide (CO2) and soil fertility on the physiological performance of plants has been extensively studied, but their combined effect is notoriously difficult to predict. Using Coffea arabica as a model tree species, we observed an additive effect on growth, by which aboveground productivity was highest under elevated CO2 and ammonium fertilization, while nitrate fertilization favored greater belowground biomass allocation regardless of CO2 concentration. A pulse of labelled gases ((13)CO2 and (15)NH3) was administered to these trees as a means to determine the legacy effect of CO2 level and soil nitrogen form on foliar gas uptake and translocation. Surprisingly, trees with the largest aboveground biomass assimilated significantly less NH3 than the smaller trees. This was partly explained by declines in stomatal conductance in plants grown under elevated CO2. However, unlike the (13)CO2 pulse, assimilation and transport of the (15)NH3 pulse to shoots and roots varied as a function of interactions between stomatal conductance and direct plant response to the form of soil nitrogen, observed as differences in tissue nitrogen content and biomass allocation. Nitrogen form is therefore an intrinsic component of physiological responses to atmospheric change, including assimilation of gaseous nitrogen as influenced by plant growth history

    Portuguese Children's Sleep Habits Questionnaire - validation and cross-cultural comparison

    Get PDF
    OBJECTIVE: to validate the Portuguese version of the Children's Sleep Habits Questionnaire (CSHQ-PT) and compare it to the versions from other countries. METHODS: the questionnaire was previously adapted to the Portuguese language according to international guidelines. 500 questionnaires were delivered to the parents of a Portuguese community sample of children aged 2 to 10 years old. 370 (74%) valid questionnaires were obtained, 55 children met exclusion criteria and 315 entered in the validation study. RESULTS: the CSHQ-PT internal consistency (Cronbach's α) was 0.78 for the total scale and ranged from 0.44 to 0.74 for subscales. The test-retest reliability for subscales (Pearson's correlations, n=58) ranged from 0.59 to 0.85. Our data did not adjust to the original 8 domains structure in Confirmatory Factor Analysis but the Exploratory Factor Analysis extracted 5 factors that have correspondence to CSHQ subscales. CONCLUSION: the CSHQ-PT evidenced psychometric properties that are comparable to the versions from other countries and adequate for the screening of sleep disturbances in children from 2 to 10 years old

    Tree growth acceleration and expansion of alpine forests: The synergistic effect of atmospheric and edaphic change.

    Get PDF
    Many forest ecosystems have experienced recent declines in productivity; however, in some alpine regions, tree growth and forest expansion are increasing at marked rates. Dendrochronological analyses at the upper limit of alpine forests in the Tibetan Plateau show a steady increase in tree growth since the early 1900s, which intensified during the 1930s and 1960s, and have reached unprecedented levels since 1760. This recent growth acceleration was observed in small/young and large/old trees and coincided with the establishment of trees outside the forest range, reflecting a connection between the physiological performance of dominant species and shifts in forest distribution. Measurements of stable isotopes (carbon, oxygen, and nitrogen) in tree rings indicate that tree growth has been stimulated by the synergistic effect of rising atmospheric CO2 and a warming-induced increase in water and nutrient availability from thawing permafrost. These findings illustrate the importance of considering soil-plant-atmosphere interactions to understand current and anticipate future changes in productivity and distribution of forest ecosystems

    Auxin-degron system identifies immediate mechanisms of OCT4.

    Get PDF
    The pluripotency factor OCT4 is essential for the maintenance of naive pluripotent stem cells in vitro and in vivo. However, the specific role of OCT4 in this process remains unknown. Here, we developed a rapid protein-level OCT4 depletion system that demonstrates that the immediate downstream response to loss of OCT4 is reduced expression of key pluripotency factors. Our data show a requirement for OCT4 for the efficient transcription of several key pluripotency factors and suggest that expression of trophectoderm markers is a subsequent event. In addition, we find that NANOG is able to bind to the genome in the absence of OCT4, and this binding is in fact enhanced. Globally, however, the active enhancer-associated histone mark H3K27ac is depleted. Our work establishes that, while OCT4 is required for the maintenance of the naive transcription factor network, at a normal embryonic stem cell levels it antagonizes this network through inhibition of NANOG binding

    Multiploidy occurrence in tomato calli from anther culture

    Get PDF
    Anther culture has long been used for the production of fully homozygous lines in order to produce, mainly, doubled haploid plants, which are of great interest in plant breeding. For tomato, a recalcitrant species for androgenesis production protocols have not been standardized. It is known that the genotype, anther size, the developmental stage of the microspore, and the medium composition are some factors that can influence the calli production. The present study aimed to adapt flow cytometry methodology to verify the microsporogenesis phases of anthers in order to assess the anther responsiveness of different tomato genotypes in an androgenesis-induction culture medium and to analyze the DNA ploidy level of calli produced by flow cytometry. Anthers from flower buds of length 1.0 to 5.9 mm, corresponding to the size range as analyzed by flow cytometry and cytogenetic methods, were inoculated into Murashige and Skoog (MS) basal medium containing the growth regulators 6-(y,ydimethylallylamino) purine and indole-3-acetic acid. The obtained calli were subsequently analyzed by flow cytometry to determine the DNA ploidy level. Surprisingly, despite no pretreatment with microtubule-depolymerizing agents, five classes of multiploid calli were observed, as follows: class I (2C-4C-8C-16C), class II (2C-4C-8C-16C-32C), class III (4C-8C), class IV (4C-8C-16C) and class V (8C-16C- 32C). Multiploid calli were identified in short-term (two month) culturing, suggesting that the variable culture duration did not directly influence the occurrence of endoreduplication. In this work, this type of somaclonal variation has been reported for the first time in tomato anther culture, and their possible origin has been discussed.Key words: Callogenesis, flow cytometry, polyploidy, Solanum lycopersicum, somaclonal variation
    • …
    corecore