62,091 research outputs found
Characterization of manifolds of constant curvature by spherical curves
It is known that the so-called rotation minimizing (RM) frames allow for a
simple and elegant characterization of geodesic spherical curves in Euclidean,
hyperbolic, and spherical spaces through a certain linear equation involving
the coefficients that dictate the RM frame motion (da Silva, da Silva in
Mediterr J Math 15:70, 2018). Here, we shall prove the converse, i.e., we show
that if all geodesic spherical curves on a Riemannian manifold are
characterized by a certain linear equation, then all the geodesic spheres with
a sufficiently small radius are totally umbilical and, consequently, the given
manifold has constant sectional curvature. We also furnish two other
characterizations in terms of (i) an inequality involving the mean curvature of
a geodesic sphere and the curvature function of their curves and (ii) the
vanishing of the total torsion of closed spherical curves in the case of
three-dimensional manifolds. Finally, we also show that the same results are
valid for semi-Riemannian manifolds of constant sectional curvature.Comment: To appear in Annali di Matematica Pura ed Applicat
Scale insects (Hemiptera: Coccoidea) of ornamental plants from Sao Carlos, Sao Paulo, Brazil
A list of 35 scale insects collected from 72 ornamental plant species in Sao Carlos, Sao Paulo, Brazil is provided. Regarding host specificity, 30 scale insects were polyphagous, 4 oligophagous, and 1 monophagous. A total of 102 coccoid/plant associations are recorded, 29 of which are new host records for the species; 60 are new host records for the species in Brazil. Pulvinaria urbicola Cockerell, 1893 (Coccidae), Phenacoccus similis Granara de Willink, 1983 (Pseudococcidae), and Orthezia molinarii (Morrison, 1952) (Ortheziidae) are recorded for the first time in Brazil. In addition, we describe the injury caused by scale insects on ornamental plants
Topological Approach to Microcanonical Thermodynamics and Phase Transition of Interacting Classical Spins
We propose a topological approach suitable to establish a connection between
thermodynamics and topology in the microcanonical ensemble. Indeed, we report
on results that point to the possibility of describing {\it interacting
classical spin systems} in the thermodynamic limit, including the occurrence of
a phase transition, using topology arguments only. Our approach relies on Morse
theory, through the determination of the critical points of the potential
energy, which is the proper Morse function. Our main finding is to show that,
in the context of the studied classical models, the Euler characteristic
embeds the necessary features for a correct description of several
magnetic thermodynamic quantities of the systems, such as the magnetization,
correlation function, susceptibility, and critical temperature. Despite the
classical nature of the studied models, such quantities are those that do not
violate the laws of thermodynamics [with the proviso that Van der Waals loop
states are mean field (MF) artifacts]. We also discuss the subtle connection
between our approach using the Euler entropy, defined by the logarithm of the
modulus of per site, and that using the {\it Boltzmann}
microcanonical entropy. Moreover, the results suggest that the loss of
regularity in the Morse function is associated with the occurrence of unstable
and metastable thermodynamic solutions in the MF case. The reliability of our
approach is tested in two exactly soluble systems: the infinite-range and the
short-range models in the presence of a magnetic field. In particular, we
confirm that the topological hypothesis holds for both the infinite-range () and the short-range () models. Further studies are very
desirable in order to clarify the extension of the validity of our proposal
Chemical abundances and kinematics of barium stars
In this paper we present an homogeneous analysis of photospheric abundances
based on high-resolution spectroscopy of a sample of 182 barium stars and
candidates. We determined atmospheric parameters, spectroscopic distances,
stellar masses, ages, luminosities and scale height, radial velocities,
abundances of the Na, Al, -elements, iron-peak elements, and s-process
elements Y, Zr, La, Ce, and Nd. We employed the local-thermodynamic-equilibrium
model atmospheres of Kurucz and the spectral analysis code {\sc moog}. We found
that the metallicities, the temperatures and the surface gravities for barium
stars can not be represented by a single gaussian distribution. The abundances
of -elements and iron peak elements are similar to those of field giants
with the same metallicity. Sodium presents some degree of enrichment in more
evolved stars that could be attributed to the NeNa cycle. As expected, the
barium stars show overabundance of the elements created by the s-process. By
measuring the mean heavy-element abundance pattern as given by the ratio
[s/Fe], we found that the barium stars present several degrees of enrichment.
We also obtained the [hs/ls] ratio by measuring the photospheric abundances of
the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and
the [hs/ls] ratios are strongly anti-correlated with the metallicity. Our
kinematical analysis showed that 90% of the barium stars belong to the thin
disk population. Based on their luminosities, none of the barium stars are
luminous enough to be an AGB star, nor to become self-enriched in the s-process
elements. Finally, we determined that the barium stars also follow an
age-metallicity relation.Comment: 30 pages, 26 figures, 18 tables, accepted for publication in MNRA
Neuronal glucose transporter isoform 3 deficient mice demonstrate features of autism spectrum disorders.
Neuronal glucose transporter (GLUT) isoform 3 deficiency in null heterozygous mice led to abnormal spatial learning and working memory but normal acquisition and retrieval during contextual conditioning, abnormal cognitive flexibility with intact gross motor ability, electroencephalographic seizures, perturbed social behavior with reduced vocalization and stereotypies at low frequency. This phenotypic expression is unique as it combines the neurobehavioral with the epileptiform characteristics of autism spectrum disorders. This clinical presentation occurred despite metabolic adaptations consisting of an increase in microvascular/glial GLUT1, neuronal GLUT8 and monocarboxylate transporter isoform 2 concentrations, with minimal to no change in brain glucose uptake but an increase in lactate uptake. Neuron-specific glucose deficiency has a negative impact on neurodevelopment interfering with functional competence. This is the first description of GLUT3 deficiency that forms a possible novel genetic mechanism for pervasive developmental disorders, such as the neuropsychiatric autism spectrum disorders, requiring further investigation in humans
Correlation length scalings in fusion edge plasma turbulence computations
The effect of changes in plasma parameters, that are characteristic near or
at an L-H transition in fusion edge plasmas, on fluctuation correlation lengths
are analysed by means of drift-Alfven turbulence computations. Scalings by
density gradient length, collisionality, plasma beta, and by an imposed shear
flow are considered. It is found that strongly sheared flows lead to the
appearence of long-range correlations in electrostatic potential fluctuations
parallel and perpendicular to the magnetic field.Comment: Submitted to "Plasma Physics and Controlled Fusion
- …