5,945 research outputs found

    Separating astrophysical sources from indirect dark matter signals

    Get PDF
    Indirect searches for products of dark matter annihilation and decay face the challenge of identifying an uncertain and subdominant signal in the presence of uncertain backgrounds. Two valuable approaches to this problem are (1) using analysis methods which take advantage of different features in the energy spectrum and angular distribution of the signal and backgrounds, and (2) more accurate characterization of backgrounds, which allows for more robust identification of possible signals. These two approaches are complementary and can be significantly strengthened when used together. I review the status of indirect searches with gamma rays using two promising targets, the Inner Galaxy and the Isotropic Gamma-Ray Background. For both targets, uncertainties in the properties of backgrounds is a major limitation to the sensitivity of indirect searches. I then highlight approaches which can enhance the sensitivity of indirect searches using these targets.Comment: 7 pages, 4 figures. Contributed to the National Academy of Sciences' Dark Matter Sackler Colloquiu

    Bilingualism and conversational understanding in young children

    No full text
    The purpose of the two experiments reported here was to investigate whether bilingualism confers an advantage on children’s conversational understanding. A total of 163 children aged 3 to 6 years were given a Conversational Violations Test to determine their ability to identify responses to questions as violations of Gricean maxims of conversation (to be informative and avoid redundancy, speak the truth, and be relevant and polite). Though comparatively delayed in their L2 vocabulary, children who were bilingual in Italian and Slovenian (with Slovenian as the dominant language) generally outperformed those who were either monolingual in Italian or Slovenian. We suggest that bilingualism can be accompanied by an enhanced ability to appreciate effective communicative responses

    Joint anisotropy and source count constraints on the contribution of blazars to the diffuse gamma-ray background

    Get PDF
    We place new constraints on the contribution of blazars to the large-scale isotropic gamma-ray background (IGRB) by jointly analyzing the measured source count distribution (logN-logS) of blazars and the measured intensity and anisotropy of the IGRB. We find that these measurements point to a consistent scenario in which unresolved blazars make less than 20% of the IGRB intensity at 1-10 GeV while accounting for the majority of the measured anisotropy in that energy band. These results indicate that the remaining fraction of the IGRB intensity is made by a component with a low level of intrinsic anisotropy. We determine upper limits on the anisotropy from non-blazar sources, adopting the best-fit parameters of the measured source count distribution to calculate the unresolved blazar anisotropy. In addition, we show that the anisotropy measurement excludes some recently proposed models of the unresolved blazar population.Comment: 7 pages, 4 figures. v2: new section (Sec.III) and 2 figures added. Expanded discussions in the other sections. Results and conclusions unchanged. New Section III is also a reply to the comment of Harding & Abazajian arXiv:1204.3870 on this wor

    Anisotropies in the diffuse gamma-ray background measured by the Fermi LAT

    Get PDF
    The contribution of unresolved sources to the diffuse gamma-ray background could induce anisotropies in this emission on small angular scales. We analyze the angular power spectrum of the diffuse emission measured by the Fermi Large Area Telescope at Galactic latitudes |b|>30° in four energy bins spanning 1–50 GeV. At multipoles ℓ≥155, corresponding to angular scales ≲2°, angular power above the photon noise level is detected at >99.99%  confidence level in the 1–2 GeV, 2–5 GeV, and 5–10 GeV energy bins, and at >99% confidence level at 10–50 GeV. Within each energy bin the measured angular power takes approximately the same value at all multipoles ℓ≥155, suggesting that it originates from the contribution of one or more unclustered source populations. The amplitude of the angular power normalized to the mean intensity in each energy bin is consistent with a constant value at all energies, C_P/⟨I⟩^2=9.05±0.84×10^(-6)  sr, while the energy dependence of C_P is consistent with the anisotropy arising from one or more source populations with power-law photon spectra with spectral index Γ_s=2.40±0.07. We discuss the implications of the measured angular power for gamma-ray source populations that may provide a contribution to the diffuse gamma-ray background

    Detection of alteration associated with a porphyry copper deposit in southern Arizona

    Get PDF
    Computer processing of Landsat MSS data was performed using contrast stretching and band-to-band ratioing. A false color ratio composite picture showed color anomalies which coincided with known areas of alteration on and about Red Mountain. A helicopter survey of the study area was undertaken using a portable field reflectance spectrometer. One hundred fifty-six spectra were obtained in the 0.4 to 2.5 micrometer wavelength region. The spectra were digitized, and contour maps for 24 wavelength intervals were produced; no spectral anomalies were evident for the known altered areas. A contour map produced from the 1.6 and 2.2 micrometer ratio generally delineated the alteration areas. The 1.3, 1.6, and 2.2 micrometer wavelength data were canonically transformed using a transformation empirically derived from discriminant function analysis of altered and unaltered materials for the Goldfield, Nevada region, and a contour map was produced for the first canonical variable. The known areas of alteration were clearly defined on the contour map

    In Silico Synchronization of Cellular Populations Through Expression Data Deconvolution

    Full text link
    Cellular populations are typically heterogenous collections of cells at different points in their respective cell cycles, each with a cell cycle time that varies from individual to individual. As a result, true single-cell behavior, particularly that which is cell-cycle--dependent, is often obscured in population-level (averaged) measurements. We have developed a simple deconvolution method that can be used to remove the effects of asynchronous variability from population-level time-series data. In this paper, we summarize some recent progress in the development and application of our approach, and provide technical updates that result in increased biological fidelity. We also explore several preliminary validation results and discuss several ongoing applications that highlight the method's usefulness for estimating parameters in differential equation models of single-cell gene regulation.Comment: accepted for the 48th ACM/IEEE Design Automation Conferenc
    • …
    corecore