153 research outputs found

    Spin Injection into a Luttinger Liquid

    Full text link
    We study the effect of spin injection into a Luttinger liquid. The spin-injection-detection setup of Johnson and Silsbee is considered; here spins injected into the Luttinger liquid induce, across an interface with a ferromagnetic metal, either a spin-dependent current (IsI_s) or a spin-dependent boundary voltage (VsV_s). We find that the spin-charge separation nature of the Luttinger liquid affects IsI_s and VsV_s in a very different fashion. In particular, in the Ohmic regime, VsV_s depends on the spin transport properties of the Luttinger liquid in essentially the same way as it would in the case of a Fermi liquid. The implications of our results for the spin-injection-detection experiments in the high TcT_c cuprates are discussed.Comment: 4 pages, REVTEX, 2 figures. Minor changes and corrections to typos. To appear in Phys. Rev. Let

    Exergetic performance and comparative assessment of bottoming power cycles operating with carbon dioxide–based binary mixture as working fluid

    Get PDF
    This paper presents CO2-toluene (CO2-C7H8) binary mixture as working fluid to enhance the energetic and exergetic performance of CO2 bottoming power cycles in warm ambient conditions. A criterion for selection of CO2-based binary mixture is defined, and 0.9 CO2/0.1 C7H8 composition is decided based on the required minimum cycle temperature compatible with ambient conditions. Bottoming simple regenerative cycle (BSRC) and bottoming preheating cycle (BPHC) configurations are selected, and their realistic operating conditions are determined based on sensitivity analysis. The performance of bottoming cycles using CO2-C7H8 binary mixture is compared with the bottoming cycles using pure CO2 as working fluid at different ambient temperatures. It is observed that the cycles operating with pure CO2 can only perform better at lower ambient temperature conditions, whereas, at the increased ambient temperatures, bottoming cycles with CO2-C7H8 binary mixture outperform and produce significant gains in exergetic and energetic performance compared with pure CO2 bottoming cycles. A maximum gain of exergetic efficiency for BSRC and BPHC observed is 26.83% and 18.71%, respectively, at an operating ambient temperature of 313 K, whereas an overall gain in energetic efficiencies for BSRC and BPHC observed is 28.92% and 10.12%, respectively. Taking into consideration thermodynamic performance, overall UA (product of overall heat transfer coefficient and heat transfer area for the heat exchanger) and specific investment cost, BPHC configuration is suggested as reasonable choice for higher ambient temperature conditions

    Theory of neutral and charged exciton scattering with electrons in semiconductor quantum wells

    Full text link
    Electron scattering on both neutral (XX) and charged (XX^-) excitons in quantum wells is studied theoretically. A microscopic model is presented, taking into account both elastic and dissociating scattering. The model is based on calculating the exciton-electron direct and exchange interaction matrix elements, from which we derive the exciton scattering rates. We find that for an electron density of 109cm210^9 {\rm cm}^{-2} in a GaAs QW at T=5KT=5K, the XX^- linewidth due to electron scattering is roughly twice as large as that of the neutral exciton. This reflects both the XX^- larger interaction matrix elements compared with those of XX, and their different dependence on the transferred momentum. Calculated reflection spectra can then be obtained by considering the three electronic excitations of the system, namely, the heavy-hole and light-hole 1S neutral excitons, and the heavy-hole 1S charged exciton, with the appropriate oscillator strengths.Comment: 18 pages, 12 figure

    Clinicopathological and prognostic significance of EGFR, VEGF, and HER2 expression in cholangiocarcinoma

    Get PDF
    Epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), and human epidermal growth factor receptor 2 (HER2) have been considered as potential therapeutic targets in cholangiocarcinoma, but no studies have yet clarified the clinicopathological or prognostic significance of these molecules. Immunohistochemical expression of these molecules was assessed retrospectively in 236 cases of cholangiocarcinoma, as well as associations between the expression of these molecules and clinicopathological factors or clinical outcome. The proportions of positive cases for EGFR, VEGF, and HER2 overexpression were 27.4, 53.8, and 0.9% in intrahepatic cholangiocarcinoma (IHCC), and 19.2, 59.2, and 8.5% in extrahepatic cholangiocarcinoma (EHCC), respectively. Clinicopathologically, EGFR overexpression was associated with macroscopic type (P=0.0120), lymph node metastasis (P=0.0006), tumour stage (P=0.0424), lymphatic vessel invasion (P=0.0371), and perineural invasion (P=0.0459) in EHCC, and VEGF overexpression with intrahepatic metastasis (P=0.0224) in IHCC. Multivariate analysis showed that EGFR expression was a significant prognostic factor (hazard ratio (HR), 2.67; 95% confidence interval (CI), 1.52–4.69; P=0.0006) and also a risk factor for tumour recurrence (HR, 1.89; 95% CI, 1.05–3.39, P=0.0335) in IHCC. These results suggest that EGFR expression is associated with tumour progression and VEGF expression may be involved in haematogenic metastasis in cholangiocarcinoma

    Conductive Cellulose Composites with Low Percolation Threshold for 3D Printed Electronics

    Get PDF
    We are reporting a 3D printable composite paste having strong thixotropic rheology. The composite has been designed and investigated with highly conductive silver nanowires. The optimized electrical percolation threshold from both simulation and experiment is shown from 0.7 vol. % of silver nanowires which is significantly lower than other composites using conductive nano-materials. Reliable conductivity of 1.19 × 102 S/cm has been achieved from the demonstrated 3D printable composite with 1.9 vol. % loading of silver nanowires. Utilizing the high conductivity of the printable composites, 3D printing of designed battery electrode pastes is demonstrated. Rheology study shows superior printability of the electrode pastes aided by the cellulose\u27s strong thixotropic rheology. The designed anode, electrolyte, and cathode pastes are sequentially printed to form a three-layered lithium battery for the demonstration of a charging profile. This study opens opportunities of 3D printable conductive materials to create printed electronics with the next generation additive manufacturing process

    Prognostic analysis of tumour angiogenesis, determined by microvessel density and expression of vascular endothelial growth factor, in high-risk primary breast cancer patients treated with high-dose chemotherapy

    Get PDF
    In contrast to early breast cancer, the prognostic effect of tumour angiogenesis in tumours with advanced axillary spread has been less studied. We retrospectively analysed the effect of microvessel density (MVD) and vascular endothelial growth factor (VEGF) by immunohistochemistry on the outcome of 215 patients treated uniformly within prospective trials of high-dose chemotherapy for 4–9 and ⩾10 positive nodes, and followed for a median of 9 (range 3–13) years. Microvessel density was associated with epidermal growth factor receptor (EGFR) expression (P<0.001) and tumour size (P=0.001). Vascular endothelial growth factor overexpression (51% of patients) was associated with overexpression of EGFR (P=0.01) and HER2 (P<0.05), but not with MVD (P=0.3). High MVD was associated with worse relapse-free survival (74 vs 44%, P<0.001) and overall survival (76 vs 44%, P<0.001). Vascular endothelial growth factor overexpression had no effect on outcome. Multivariate analyses showed a prognostic effect of MVD independently of other known prognostic factors in this patient population. In conclusion, tumour angiogenesis, expressed as MVD, is a major independent prognostic factor in breast cancer patients with extensive axillary involvement

    Heterogeneity of Microglial Activation in the Innate Immune Response in the Brain

    Get PDF
    The immune response in the brain has been widely investigated and while many studies have focused on the proinflammatory cytotoxic response, the brain’s innate immune system demonstrates significant heterogeneity. Microglia, like other tissue macrophages, participate in repair and resolution processes after infection or injury to restore normal tissue homeostasis. This review examines the mechanisms that lead to reduction of self-toxicity and to repair and restructuring of the damaged extracellular matrix in the brain. Part of the resolution process involves switching macrophage functional activation to include reduction of proinflammatory mediators, increased production and release of anti-inflammatory cytokines, and production of cytoactive factors involved in repair and reconstruction of the damaged brain. Two partially overlapping and complimentary functional macrophage states have been identified and are called alternative activation and acquired deactivation. The immunosuppressive and repair processes of each of these states and how alternative activation and acquired deactivation participate in chronic neuroinflammation in the brain are discussed
    corecore