103 research outputs found

    Sexual Closeness Discrepancies: What They Are and Why They Matter for Sexual Well-Being in Romantic Relationships

    Get PDF
    This study examined the impact of sexual closeness on sexual well-being. We developed a nuanced and multifaceted conceptualization of sexual closeness in the form of a constellation of ideal sexual closeness with a partner, actual sexual closeness, and the discrepancy between the two. Data were obtained from a diverse sample of NΒ =Β 619 participants who took part in the Lives and Relationships Study: A longitudinal survey of men and women in relationships living in the U.S. and Canada. Increases in sexual closeness discrepancies over a period of 1Β year predicted concomitant decreases in two indicators of sexual well-being: sexual satisfaction and orgasm frequency evaluations. Decreases in sexual closeness discrepancies resulted in improvement in sexual well-being. Individuals who reported no sexual closeness discrepancies and experienced no changes in sexual closeness discrepancies tended to have the highest levels of sexual well-being. Importantly, sexual closeness discrepancies were robust predictors of sexual well-being, above and beyond individuals' actual sexual closeness, general relationship closeness, and other demographic and relationship characteristics known to be associated with sexual well-being. The present findings demonstrate that how close people feel sexually to their relationship partners is part of a general constellation of factors related to relationship closeness that, only when considered together, sufficiently explain the ways in which experiences of closeness impact sexual well-being in romantic relationships

    Typing of Salmonella Typhi strains isolated from Egypt by RAPD PCR

    Get PDF
    PCR-based fingerprinting using random amplified polymorphic DNA (RAPD) has been used widely for genome identification. In this study, 13 Salmonella Typhi strains were isolated from typhoid patients from Aswan, Cairo, Fayoum, and Monofya Governorates of Egypt. The isolates, along with three reference strains, i.e., O901, H901, and Ty2 were subjected to whole genome typing by RAPD PCR. Three RAPD-PCR 10-mer primers generated a total of 85 RAPD bands (81 polymorphic bands), 12 distinct PCR profiles, and proved to be useful for discriminating the isolates and strains studied. Interestingly, the B1 and C1 PCR profile were found only in Cairo and Monofya, respectively; and some PCR types appeared only in certain Governorates of Egypt. By combining the profiles obtained with the primer trio used in this study, an excellent discrimination index (D) of 0.942 was reached. Pairwise comparisons of Jaccard’s similarity coefficients calculated among the 12 PCR types identified three major clusters; i.e., O901 branch and Ty2 and H901 sub-branches. Principal component analysis adequately resolved each of these three major clusters. Three principal components accounted for about 72% of the variation, with the first two components accounting for about 62% of the total variance among the genotypes studied. Biclustering improved the display of groups of RAPD amplicons (markers) that cluster similarly across the genomes and could delineate features pertaining to genome structure. In conclusion, RAPD PCR provided a fast method with high potentials in surveillance and epidemiological investigations of Salmonella Typhi infections

    Staphylococcus aureus bacteriuria as a prognosticator for outcome of Staphylococcus aureus bacteremia: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When <it>Staphylococcus aureus </it>is isolated in urine, it is thought to usually represent hematogenous spread. Because such spread might have special clinical significance, we evaluated predictors and outcomes of <it>S. aureus </it>bacteriuria among patients with <it>S. aureus </it>bacteremia.</p> <p>Methods</p> <p>A case-control study was performed at John H. Stroger Jr. Hospital of Cook County among adult inpatients during January 2002-December 2006. Cases and controls had positive and negative urine cultures, respectively, for <it>S. aureus</it>, within 72 hours of positive blood culture for <it>S. aureus</it>. Controls were sampled randomly in a 1:4 ratio. Univariate and multivariable logistic regression analyses were done.</p> <p>Results</p> <p>Overall, 59% of patients were African-American, 12% died, 56% of infections had community-onset infections, and 58% were infected with methicillin-susceptible <it>S. aureus </it>(MSSA). Among 61 cases and 247 controls, predictors of <it>S. aureus </it>bacteriuria on multivariate analysis were urological surgery (OR = 3.4, p = 0.06) and genitourinary infection (OR = 9.2, p = 0.002). Among patients who died, there were significantly more patients with bacteriuria than among patients who survived (39% vs. 17%; p = 0.002). In multiple Cox regression analysis, death risks in bacteremic patients were bacteriuria (hazard ratio 2.9, CI 1.4-5.9, p = 0.004), bladder catheter use (2.0, 1.0-4.0, p = 0.06), and Charlson score (1.1, 1.1-1.3, p = 0.02). Neither length of stay nor methicillin-resistant <it>Staphylococcus aureus </it>(MRSA) infection was a predictor of <it>S. aureus </it>bacteriuria or death.</p> <p>Conclusions</p> <p>Among patients with <it>S. aureus </it>bacteremia, those with <it>S. aureus </it>bacteriuria had 3-fold higher mortality than those without bacteriuria, even after adjustment for comorbidities. Bacteriuria may identify patients with more severe bacteremia, who are at risk of worse outcomes.</p

    The Problematization of Sexuality among Women Living with HIV and a New Feminist Approach for Understanding and Enhancing Women’s Sexual Lives

    Get PDF
    In the context of HIV, women’s sexual rights and sexual autonomy are important but frequently overlooked and violated. Guided by community voices, feminist theories, and qualitative empirical research, we reviewed two decades of global quantitative research on sexuality among women living with HIV. In the 32 studies we found, conducted in 25 countries and composed mostly of cis-gender heterosexual women, sexuality was narrowly constructed as sexual behaviours involving risk (namely, penetration) and physiological dysfunctions relating to HIV illness, with far less attention given to the fullness of sexual lives in context, including more&nbsp;positive and rewarding experiences such as satisfaction and pleasure. Findings suggest that women experience declines in sexual activity, function, satisfaction, and pleasure following HIV diagnosis, at least for some period. The extent of such declines, however, is varied, with numerous contextual forces shaping women’s sexual well-being. Clinical markers of HIV (e.g., viral load, CD4 cell count) poorly predicted sexual outcomes, interrupting widely held assumptions about sexuality for women with HIV. Instead, the effects of HIV-related stigma intersecting with inequities related to trauma, violence, intimate relations, substance use, poverty, aging, and other social and cultural conditions primarily influenced the ways in which women experienced and enacted their sexuality. However, studies framed through a medical lens tended to pathologize outcomes as individual β€œproblems,” whereas others driven by a public health agenda remained primarily preoccupied with protecting the public from HIV. In light of these findings, we present a new feminist approach for research, policy, and practice toward understanding and enhancing women’s sexual livesβ€”one that affirms sexual diversity; engages deeply with society, politics, and history; and is grounded in women’s sexual rights

    Methionine Sulfoxide Reductases Are Essential for Virulence of Salmonella Typhimurium

    Get PDF
    Production of reactive oxygen species represents a fundamental innate defense against microbes in a diversity of host organisms. Oxidative stress, amongst others, converts peptidyl and free methionine to a mixture of methionine-S- (Met-S-SO) and methionine-R-sulfoxides (Met-R-SO). To cope with such oxidative damage, methionine sulfoxide reductases MsrA and MsrB are known to reduce MetSOs, the former being specific for the S-form and the latter being specific for the R-form. However, at present the role of methionine sulfoxide reductases in the pathogenesis of intracellular bacterial pathogens has not been fully detailed. Here we show that deletion of msrA in the facultative intracellular pathogen Salmonella (S.) enterica serovar Typhimurium increased susceptibility to exogenous H2O2, and reduced bacterial replication inside activated macrophages, and in mice. In contrast, a Ξ”msrB mutant showed the wild type phenotype. Recombinant MsrA was active against free and peptidyl Met-S-SO, whereas recombinant MsrB was only weakly active and specific for peptidyl Met-R-SO. This raised the question of whether an additional Met-R-SO reductase could play a role in the oxidative stress response of S. Typhimurium. MsrC is a methionine sulfoxide reductase previously shown to be specific for free Met-R-SO in Escherichia (E.) coli. We tested a Ξ”msrC single mutant and a Ξ”msrBΞ”msrC double mutant under various stress conditions, and found that MsrC is essential for survival of S. Typhimurium following exposure to H2O2, as well as for growth in macrophages, and in mice. Hence, this study demonstrates that all three methionine sulfoxide reductases, MsrA, MsrB and MsrC, facilitate growth of a canonical intracellular pathogen during infection. Interestingly MsrC is specific for the repair of free methionine sulfoxide, pointing to an important role of this pathway in the oxidative stress response of Salmonella Typhimurium

    Selection of Salmonella enterica Serovar Typhi Genes Involved during Interaction with Human Macrophages by Screening of a Transposon Mutant Library

    Get PDF
    The human-adapted Salmonella enterica serovar Typhi (S. Typhi) causes a systemic infection known as typhoid fever. This disease relies on the ability of the bacterium to survive within macrophages. In order to identify genes involved during interaction with macrophages, a pool of approximately 105 transposon mutants of S. Typhi was subjected to three serial passages of 24 hours through human macrophages. Mutants recovered from infected macrophages (output) were compared to the initial pool (input) and those significantly underrepresented resulted in the identification of 130 genes encoding for cell membrane components, fimbriae, flagella, regulatory processes, pathogenesis, and many genes of unknown function. Defined deletions in 28 genes or gene clusters were created and mutants were evaluated in competitive and individual infection assays for uptake and intracellular survival during interaction with human macrophages. Overall, 26 mutants had defects in the competitive assay and 14 mutants had defects in the individual assay. Twelve mutants had defects in both assays, including acrA, exbDB, flhCD, fliC, gppA, mlc, pgtE, typA, waaQGP, SPI-4, STY1867-68, and STY2346. The complementation of several mutants by expression of plasmid-borne wild-type genes or gene clusters reversed defects, confirming that the phenotypic impairments within macrophages were gene-specific. In this study, 35 novel phenotypes of either uptake or intracellular survival in macrophages were associated with Salmonella genes. Moreover, these results reveal several genes encoding molecular mechanisms not previously known to be involved in systemic infection by human-adapted typhoidal Salmonella that will need to be elucidated

    Nitric Oxide Antagonizes the Acid Tolerance Response that Protects Salmonella against Innate Gastric Defenses

    Get PDF
    Reactive nitrogen species (RNS) derived from dietary and salivary inorganic nitrogen oxides foment innate host defenses associated with the acidity of the stomach. The mechanisms by which these reactive species exert antimicrobial activity in the gastric lumen are, however, poorly understood.The genetically tractable acid tolerance response (ATR) that enables enteropathogens to survive harsh acidity was screened for signaling pathways responsive to RNS. The nitric oxide (NO) donor spermine NONOate derepressed the Fur regulon that controls secondary lines of resistance against organic acids. Despite inducing a Fur-mediated adaptive response, acidified RNS largely repressed oral virulence as demonstrated by the fact that Salmonella bacteria exposed to NO donors during mildly acidic conditions were shed in low amounts in feces and exhibited ameliorated oral virulence. NO prevented Salmonella from mounting a de novo ATR, but was unable to suppress an already functional protective response, suggesting that RNS target regulatory cascades but not their effectors. Transcriptional and translational analyses revealed that the PhoPQ signaling cascade is a critical ATR target of NO in rapidly growing Salmonella. Inhibition of PhoPQ signaling appears to contribute to most of the NO-mediated abrogation of the ATR in log phase bacteria, because the augmented acid sensitivity of phoQ-deficient Salmonella was not further enhanced after RNS treatment.Since PhoPQ-regulated acid resistance is widespread in enteric pathogens, the RNS-mediated inhibition of the Salmonella ATR described herein may represent a common component of innate host defenses

    New Approaches in the Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells toward Hepatocytes

    Get PDF
    Orthotropic liver transplantation is the only established treatment for end-stage liver diseases. Utilization of hepatocyte transplantation and bio-artificial liver devices as alternative therapeutic approaches requires an unlimited source of hepatocytes. Stem cells, especially embryonic stem cells, possessing the ability to produce functional hepatocytes for clinical applications and drug development, may provide the answer to this problem. New discoveries in the mechanisms of liver development and the emergence of induced pluripotent stem cells in 2006 have provided novel insights into hepatocyte differentiation and the use of stem cells for therapeutic applications. This review is aimed towards providing scientists and physicians with the latest advancements in this rapidly progressing field

    Comparison of Hepatic-like Cell Production from Human Embryonic Stem Cells and Adult Liver Progenitor Cells: CAR Transduction Activates a Battery of Detoxification Genes

    Get PDF
    In vitro production of human hepatocytes is of primary importance in basic research, pharmacotoxicology and biotherapy of liver diseases. We have developed a protocol of differentiation of human embryonic stem cells (ES) towards hepatocyte-like cells (ES-Hep). Using a set of human adult markers including CAAT/enhancer binding protein (C/EBPalpha), hepatocyte nuclear factor 4/7 ratio (HNF4alpha1/HNF4alpha7), cytochrome P450 7A1 (CYP7A1), CYP3A4 and constitutive androstane receptor (CAR), and fetal markers including alpha-fetoprotein, CYP3A7 and glutathione S-transferase P1, we analyzed the expression of a panel of 41 genes in ES-Hep comparatively with human adult primary hepatocytes, adult and fetal liver. The data revealed that after 21Β days of differentiation, ES-Hep are representative of fetal hepatocytes at less than 20Β weeks of gestation. The glucocorticoid receptor pathway was functional in ES-Hep. Extending protocols of differentiation to 4Β weeks did not improve cell maturation. When compared with hepatocyte-like cells derived from adult liver non parenchymal epithelial (NPE) cells (NPE-Hep), ES-Hep expressed several adult and fetal liver makers at much greater levels (at least one order of magnitude), consistent with greater expression of liver-enriched transcription factors Forkhead box A2, C/EBPalpha, HNF4alpha and HNF6. It therefore seems that ES-Hep reach a better level of differentiation than NPE-Hep and that these cells use different lineage pathways towards the hepatic phenotype. Finally we showed that lentivirus-mediated expression of xenoreceptor CAR in ES-Hep induced the expression of several detoxification genes including CYP2B6, CYP2C9, CYP3A4, UDP-glycosyltransferase 1A1, solute carriers 21A6, as well as biotransformation of midazolam, a CYP3A4-specific substrate
    • …
    corecore