30 research outputs found

    Type Ia Supernova Explosion Models

    Get PDF
    Because calibrated light curves of Type Ia supernovae have become a major tool to determine the local expansion rate of the Universe and also its geometrical structure, considerable attention has been given to models of these events over the past couple of years. There are good reasons to believe that perhaps most Type Ia supernovae are the explosions of white dwarfs that have approached the Chandrasekhar mass, M_ch ~ 1.39 M_sun, and are disrupted by thermonuclear fusion of carbon and oxygen. However, the mechanism whereby such accreting carbon-oxygen white dwarfs explode continues to be uncertain. Recent progress in modeling Type Ia supernovae as well as several of the still open questions are addressed in this review. Although the main emphasis will be on studies of the explosion mechanism itself and on the related physical processes, including the physics of turbulent nuclear combustion in degenerate stars, we also discuss observational constraints.Comment: 38 pages, 4 figures, Annual Review of Astronomy and Astrophysics, in pres

    The Supernova Gamma-Ray Burst Connection

    Get PDF
    The chief distinction between ordinary supernovae and long-soft gamma-ray bursts (GRBs) is the degree of differential rotation in the inner several solar masses when a massive star dies, and GRBs are rare mainly because of the difficulty achieving the necessary high rotation rate. Models that do provide the necessary angular momentum are discussed, with emphasis on a new single star model whose rapid rotation leads to complete mixing on the main sequence and avoids red giant formation. This channel of progenitor evolution also gives a broader range of masses than previous models, and allows the copious production of bursts outside of binaries and at high redshifts. However, even the production of a bare helium core rotating nearly at break up is not, by itself, a sufficient condition to make a gamma-ray burst. Wolf-Rayet mass loss must be low, and will be low in regions of low metallicity. This suggests that bursts at high redshift (low metallicity) will, on the average, be more energetic, have more time structure, and last longer than bursts nearby. Every burst consists of three components: a polar jet (~0.1 radian), high energy, subrelativistic mass ejection (~1 radian), and low velocity equatorial mass that can fall back after the initial explosion. The relative proportions of these three components can give a diverse assortment of supernovae and high energy transients whose properties may vary with redshift.Comment: 10 pages, to appear in AIP Conf. Proc. "Gamma Ray Bursts in the Swift Era", Eds. S. S. Holt, N. Gehrels, J. Nouse

    Optical and spectral observations and hydrodynamic modelling of type IIb supernova 2017gpn

    Get PDF
    In this work we present the photometric and spectroscopic observations of type IIb supernova 2017gpn. This supernova was discovered in the error-box of the LIGO/Virgo G299232 gravitational-wave event. We obtained the light curves in the B and R passbands and modelled them numerically using the one-dimensional radiation hydrocode STELLA. The best-fitting model has the following parameters: the pre-SN star mass and the radius are M ≈ 3.5 M⊙ and R ≈ 50 R⊙, respectively; the explosion energy is Eexp≈1.2×1051 erg; the mass of radioactive nickel is M56Ni≈0.11 M⊙, which is completely mixed throughout the ejecta; and the mass of the hydrogen envelope MH_env ≈ 0.06 M⊙. Moreover, SN 2017gpn is a confirmed SN IIb that is located at the farthest distance from the centre of its host galaxy NGC 1343 (i.e. the projected distance is ∌21 kpc). This challenges the scenario of the origin of type IIb supernovae from massive stars

    Hierarchies of Susy Splittings and Invisible Photinos as Dark Matter

    Full text link
    We explore how to generate hierarchies in the splittings between superpartners. Some of the consequences are the existence of invisible components of dark matter, new inflaton candidates, invisible monopoles and a number of invisible particles that might dominate during various eras, in particular between BBN and recombination and decay subsequently.Comment: 16 pages. v3: Ref. 27 has been modified. v4: Published versio

    The Explosion Mechanism of Core-Collapse Supernovae and Its Observational Signatures

    Full text link
    The death of massive stars is shrouded in many mysteries. One of them is the mechanism that overturns the collapse of the degenerate iron core into an explosion, a process that determines the supernova explosion energy, properties of the surviving compact remnant, and the nucleosynthetic yields. The number of core-collapse supernova observations has been growing with an accelerating pace thanks to modern time-domain astronomical surveys and new tests of the explosion mechanism are becoming possible. We review predictions of parameterized supernova explosion models and compare them with explosion properties inferred from observed light curves, spectra, and neutron star masses.Comment: Reviews in Frontiers of Modern Astrophysics; From Space Debris to Cosmology, edited by Kab\'ath, Petr; Jones, David; Skarka, Marek. ISBN: 978-3-030-38509-5. Cham: Springer International Publishing, 2020, pp. 189-21

    The delay of shock breakout due to circumstellar material evident in most type II supernovae

    Get PDF
    Type II supernovae (SNe II) originate from the explosion of hydrogen-rich supergiant massive stars. Their first electromagnetic signature is the shock breakout (SBO), a short-lived phenomenon that can last for hours to days depending on the density at shock emergence. We present 26 rising optical light curves of SN II candidates discovered shortly after explosion by the High Cadence Transient Survey and derive physical parameters based on hydrodynamical models using a Bayesian approach. We observe a steep rise of a few days in 24 out of 26 SN II candidates, indicating the systematic detection of SBOs in a dense circumstellar matter consistent with a mass loss rate of M ˙  > 10−4M⊙ yr−1 or a dense atmosphere. This implies that the characteristic hour-timescale signature of stellar envelope SBOs may be rare in nature and could be delayed into longer-lived circumstellar material SBOs in most SNe II

    Binary systems and their nuclear explosions

    Get PDF
    Peer ReviewedPreprin

    Light-curve and spectral properties of ultra-stripped core-collapse supernovae leading to binary neutron stars

    No full text
    We investigate light-curve and spectral properties of ultra-stripped core-collapse supernovae. Ultra-stripped supernovae are the explosions of heavily stripped massive stars which lost their envelopes via binary interactions with a compact companion star. They eject only ∌0.1~M⊙ and may be the main way to form double neutron-star systems which eventually merge emitting strong gravitational waves. We follow the evolution of an ultra-stripped supernova progenitor until iron core collapse and perform explosive nucleosynthesis calculations. We then synthesize light curves and spectra of ultra-stripped supernovae using the nucleosynthesis results and present their expected properties. Ultra-stripped supernovae synthesize ∌0.01~M⊙ of radioactive 56Ni, and their typical peak luminosity is around 1042~erg~s−1 or −16 mag. Their typical rise time is 5 − 10 days. Comparing synthesized and observed spectra, we find that SN 2005ek, some of the so-called calcium-rich gap transients, and SN 2010X may be related to ultra-stripped supernovae. If these supernovae are actually ultra-stripped supernovae, their event rate is expected to be about 1 per cent of core-collapse supernovae. Comparing the double neutron-star merger rate obtained by future gravitational-wave observations and the ultra-stripped supernova rate obtained by optical transient surveys identified with our synthesized light-curve and spectral models, we will be able to judge whether ultra-stripped supernovae are actually a major contributor to the binary neutron star population and provide constraints on binary stellar evolution
    corecore