12 research outputs found

    Structure of poly(L-lactic acid)s prepared by the dehydropolycondensation of L-lactic acid with organotin catalysts

    No full text
    The synthesis of low-molecular-weight (weight-average molecular weight < 45,000 g/mol) lactic acid polymers through the dehydropolycondensation of L-lactic acid was investigated. Polymerizations were carried out in solution with solvents (xylene, mesitylene, and decalin), without a solvent using different Lewis acid catalysts (tetraphenyl tin and tetra-n-butyldichlorodistannoxane), and at three different polymerization temperatures (143, 165, and 190 °C). The products were characterized with differential scanning calorimetry, size exclusion chromatography, vapor pressure osmometry, 13C NMR, and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF). The resulting polymers contained less than 1 mol % lactide, as shown by NMR. The number-average molecular weights were calculated from the ratio of the area peaks of ester carbonyl and carboxylic acid end groups via 13C NMR. The stereosequences were analyzed by 13C NMR spectroscopy on the basis of triad effects. Tetraphenyl tin was an effective transesterification catalyst, and the randomization of the stereosequence at 190 °C was observed. In contrast, the distannoxane catalyst caused comparatively less transesterification reaction, and the randomization of the stereosequences was slow even at 190 °C. The L-lactic acid and D-lactic acid isomers were added to the polymer chain in a small, blocky fashion. The MALDI-TOF spectra of poly(L-lactic acid) (PLA) chains doped with Na+ and K+ cations showed that the PLA chains had the expected end groups. The MALDI-TOF analysis also enabled the simultaneous detection of the cyclic oligomers of PLA present in these samples, and this led to the full structural characterization of the molecular species in PLA

    Study of Layered Silicate Clays as Synergistic Nucleating Agent for Polypropylene

    No full text
    Effect of very small quantities of organically modified layered silicate clay on the nucleation of polypropylene (PP), as an additive at ppm levels dosage was investigated, in combination with two of the most commercially exploited organic nucleating agents, one of which is a cyclic aromatic phosphinate salt and the other is bis(3,4-dimethylbenzylidene) sorbitol, each representing a separate class of nucleating molecules by itself. Substitution of a considerable fraction of either of these organic nucleating agents with organically modified inorganic nanoclay was seen to result in a unique synergy between the two in nucleating PP. Polarized light microscopy studies of these synergistic formulations with organoclay to nucleating agent ratios of 1:1 and 1:3 totaling 0.2 weight percent in PP showed significant reduction in spherulite size from that of non-nucleated PP, and compared with the samples containing exclusive organic nucleating agent at similar loading. Differential scanning calorimetric studies provided evidence and insight into such synergistic behavior. Crystallization and supercooling temperatures for the synergistic formulations were comparable for those formulations containing only organic nucleating agents, indicating comparable nucleation efficiency, whereas organoclay alone, although showing some extent of nucleation, was clearly poorer in efficiency. Wide and small angle X-ray scattering studies further explained these observations. An increase in the gamma polytype fraction was seen in samples that contained both organoclay and nucleating agent, pointing to the role of organoclay as a gamma nucleator. Organoclay was found to be completely exfoliated in these synergistic formulations and was seen as well-dispersed, single platelets in the PP matrix. A hybrid network consisting of exfoliated organoclay platelets and organic nucleating agent molecules was proposed, which is more stable and stiffer than the network formed by nucleating agent alone. (C) 2010 . J Polym Sci Part B: Polym Phys 48: 1786-1794, 201

    Assessing the MALDI-TOF MS sample preparation procedure to analyze the influence of thermo-oxidative ageing and thermo-mechanical degradation on poly (Lactide)

    Get PDF
    [EN] Multiple processing by means of successive injection cycles was used to simulate the thermo-mechanical degradation effects on the oligomeric distribution of PLA under mechanical recycling. Likewise, an accelerated thermal ageing over PLA glass transition was performed in order to simulate its service life. MALDI-TOF MS was used for the analysis and the sample preparation procedure was assessed by means of a statistical Design of Experiments (DoE). The quality effects in use for the analysis were signal-to-noise ratio and Resolution. Different matrixes, analyte/matrix proportions and the use of NaTFA as cationization agent were considered. A deep inspection of the statistical results provided a better understanding of the influence of the different factors, individually or in combination, to the signal. The application of DoE for the improvement of the MALDI measurement of PLA stated that the best combination of factors (levels) was the following: matrix (s-DHB), proportion analyte/matrix (1/5 V/V), and no use of cationization agent. Degradation primarily affected the initially predominant cyclic [LA C] n and linear H[LA L] nOH species, where LA stands for a PLA repeating unit. Intramolecular and intermolecular transesterifications as well as hydrolytic and homolytic reactions took place during the formation and disappearance of oligomeric species. In both degradation mechanisms induced by thermal ageing and thermo-mechanical degradation, the formation of H[LA L] nOCH 3 by intermolecular transesterifications was highlighted. © 2011 Elsevier Ltd. All rights reserved.The authors would like to acknowledge the Spanish Ministry of Science and Innovation for the financial support through the Research Project UPOVCE-3E-013. The Spanish Ministry for Education is acknowledged for the concession of a predoctoral research position to J.D. Badia by means of the FPU program. AIMPLAS is acknowledged for providing and processing the material, respectively. Royal Institute of Technology (KTH, Sweden) and Universitat Politecnica de Valencia (UPV, Spain) are also thanked for additional economical support.Badia, J.; Strömberg, EM.; Ribes Greus, MD.; Karlsson, S. (2011). Assessing the MALDI-TOF MS sample preparation procedure to analyze the influence of thermo-oxidative ageing and thermo-mechanical degradation on poly (Lactide). EUROPEAN POLYMER JOURNAL. 47(7):1416-1428. https://doi.org/10.1016/j.eurpolymj.2011.05.001S1416142847
    corecore