642 research outputs found
Direct glass bonded high specific power silicon solar cells for space applications
A lightweight, radiation hard, high performance, ultra-thin silicon solar cell is described that incorporates light trapping and a cover glass as an integral part of the device. The manufacturing feasibility of high specific power, radiation insensitive, thin silicon solar cells was demonstrated experimentally and with a model. Ultra-thin, light trapping structures were fabricated and the light trapping demonstrated experimentally. The design uses a micro-machined, grooved back surface to increase the optical path length by a factor of 20. This silicon solar cell will be highly tolerant to radiation because the base width is less than 25 microns making it insensitive to reduction in minority carrier lifetime. Since the silicon is bonded without silicone adhesives, this solar cell will also be insensitive to UV degradation. These solar cells are designed as a form, fit, and function replacement for existing state of the art silicon solar cells with the effect of simultaneously increasing specific power, power/area, and power supply life. Using a 3-mil thick cover glass and a 0.3 g/sq cm supporting Al honeycomb, a specific power for the solar cell plus cover glass and honeycomb of 80.2 W/Kg is projected. The development of this technology can result in a revolutionary improvement in high survivability silicon solar cell products for space with the potential to displace all existing solar cell technologies for single junction space applications
Instruments and Methods: Portable Thermal Core Drill for Temperate Glaciers
In the summer of 1962 a completely portable and relatively simple electrically heated thermal core drill of new design was constructed and used to obtain 16 oriented samples of ice 2.5 cm. in diameter by 120 cm. in length from depths ranging from 12 m. to 137 m. in lower Blue Glacier, Mount Olympus, Washington, U.S.A. The thermal element is a 0.260-in. (0.66-cm.) diameter 300-W. 150-V. tubular heater bent to form an annulus with an external diameter of 5.0 cm. Opposed ratchet-like teeth break off and hold the core inside the tubular core barrel. Orientation is recorded photographically by a commercial inclinometer modified to show azimuth and to be controlled from the surface
The M Dwarf GJ 436 and its Neptune-Mass Planet
We determine stellar parameters for the M dwarf GJ 436 that hosts a
Neptune-mass planet. We employ primarily spectral modeling at low and high
resolution, examining the agreement between model and observed optical spectra
of five comparison stars of type, M0-M3. Modeling high resolution optical
spectra suffers from uncertainties in TiO transitions, affecting the predicted
strengths of both atomic and molecular lines in M dwarfs. The determination of
Teff, gravity, and metallicity from optical spectra remains at ~10%. As
molecules provide opacity both in lines and as an effective continuum,
determing molecular transition parameters remains a challenge facing models
such as the PHOENIX series, best verified with high resolution and
spectrophotometric spectra. Our analysis of GJ 436 yields an effective
temperature of Teff = 3350 +/- 300 K and a mass of 0.44 Msun. New Doppler
measurements for GJ 436 with a precision of 3 m/s taken during 6 years improve
the Keplerian model of the planet, giving a minimum mass, M sin i = 0.0713 Mjup
= 22.6 Mearth, period, P = 2.6439 d, and e = 0.16 +/- 0.02. The noncircular
orbit contrasts with the tidally circularized orbits of all close-in
exoplanets, implying either ongoing pumping of eccentricity by a more distant
companion, or a higher Q value for this low-mass planet. The velocities indeed
reveal a long term trend, indicating a possible distant companion.Comment: 27 pages, 7 figures, accepted to PAS
Viral forensic genomics reveals the relatedness of classic herpes simplex virus strains KOS, KOS63, and KOS79
Herpes simplex virus 1 (HSV-1) is a widespread global pathogen, of which the strain KOS is one of the most extensively studied. Previous sequence studies revealed that KOS does not cluster with other strains of North American geographic origin, but instead clustered with Asian strains. We sequenced a historical isolate of the original KOS strain, called KOS63, along with a separately isolated strain attributed to the same source individual, termed KOS79. Genomic analyses revealed that KOS63 closely resembled other recently sequenced isolates of KOS and was of Asian origin, but that KOS79 was a genetically unrelated strain that clustered in genetic distance analyses with HSV-1 strains of North American/European origin. These data suggest that the human source of KOS63 and KOS79 could have been infected with two genetically unrelated strains of disparate geographic origins. A PCR RFLP test was developed for rapid identification of these strains
Evolution of Plasma Flow Shear and Stability in the ZaP Flow Z-Pinch
Abstract. The stabilizing effect of an axial flow on the m = 1 kink instability in Z-pinches has been studied numerically with a linearized ideal MHD model to reveal that a sheared axial flow stabilizes the kink mode when the shear exceeds a threshold. The sheared flow stabilizing effect is investigated with the ZaP Flow Zpinch experiment. An azimuthal array of surface mounted magnetic probes measures the fluctuation levels of the azimuthal modes m = 1, 2, and 3. After pinch assembly a quiescent period is found where the mode activity is significantly reduced. The quiescent period lasts for over 2000 times the expected instability growth time in a static Z-pinch. Optical images from a fast framing camera, a two-chord HeNe interferometer, and a ruby holographic interferometer indicate a stable, discrete pinch plasma during this time. Multichord Doppler shift measurements of impurity lines show a large, sheared flow during the quiescent period and low, uniform flow profiles during periods of high mode activity. The value of the velocity shear satisfies the theoretical threshold for stability during the quiescent period and does not satisfy the threshold during the high mode activity. Experiments are conducted with varying amounts of injected neutral gas to gain an understanding of the Z-pinch formation and lifetime
Unified View of Scaling Laws for River Networks
Scaling laws that describe the structure of river networks are shown to
follow from three simple assumptions. These assumptions are: (1) river networks
are structurally self-similar, (2) single channels are self-affine, and (3)
overland flow into channels occurs over a characteristic distance (drainage
density is uniform). We obtain a complete set of scaling relations connecting
the exponents of these scaling laws and find that only two of these exponents
are independent. We further demonstrate that the two predominant descriptions
of network structure (Tokunaga's law and Horton's laws) are equivalent in the
case of landscapes with uniform drainage density. The results are tested with
data from both real landscapes and a special class of random networks.Comment: 14 pages, 9 figures, 4 tables (converted to Revtex4, PRE ref added
Topological self-similarity on the random binary-tree model
Asymptotic analysis on some statistical properties of the random binary-tree
model is developed. We quantify a hierarchical structure of branching patterns
based on the Horton-Strahler analysis. We introduce a transformation of a
binary tree, and derive a recursive equation about branch orders. As an
application of the analysis, topological self-similarity and its generalization
is proved in an asymptotic sense. Also, some important examples are presented
Excitons in a Photosynthetic Light-Harvesting System: A Combined Molecular Dynamics/Quantum Chemistry and Polaron Model Study
The dynamics of pigment-pigment and pigment-protein interactions in
light-harvesting complexes is studied with a novel approach which combines
molecular dynamics (MD) simulations with quantum chemistry (QC) calculations.
The MD simulations of an LH-II complex, solvated and embedded in a lipid
bilayer at physiological conditions (with total system size of 87,055 atoms)
revealed a pathway of a water molecule into the B800 binding site, as well as
increased dimerization within the B850 BChl ring, as compared to the
dimerization found for the crystal structure. The fluctuations of pigment (B850
BChl) excitation energies, as a function of time, were determined via ab initio
QC calculations based on the geometries that emerged from the MD simulations.
From the results of these calculations we constructed a time-dependent
Hamiltonian of the B850 exciton system from which we determined the linear
absorption spectrum. Finally, a polaron model is introduced to describe quantum
mechanically both the excitonic and vibrational (phonon) degrees of freedom.
The exciton-phonon coupling that enters into the polaron model, and the
corresponding phonon spectral function are derived from the MD/QC simulations.
It is demonstrated that, in the framework of the polaron model, the absorption
spectrum of the B850 excitons can be calculated from the autocorrelation
function of the excitation energies of individual BChls, which is readily
available from the combined MD/QC simulations. The obtained result is in good
agreement with the experimentally measured absorption spectrum.Comment: REVTeX3.1, 23 pages, 13 (EPS) figures included. A high quality PDF
file of the paper is available at
http://www.ks.uiuc.edu/Publications/Papers/PDF/DAMJ2001/DAMJ2001.pd
Reciprocity as a foundation of financial economics
This paper argues that the subsistence of the fundamental theorem of contemporary financial mathematics is the ethical concept ‘reciprocity’. The argument is based on identifying an equivalence between the contemporary, and ostensibly ‘value neutral’, Fundamental Theory of Asset Pricing with theories of mathematical probability that emerged in the seventeenth century in the context of the ethical assessment of commercial contracts in a framework of Aristotelian ethics. This observation, the main claim of the paper, is justified on the basis of results from the Ultimatum Game and is analysed within a framework of Pragmatic philosophy. The analysis leads to the explanatory hypothesis that markets are centres of communicative action with reciprocity as a rule of discourse. The purpose of the paper is to reorientate financial economics to emphasise the objectives of cooperation and social cohesion and to this end, we offer specific policy advice
- …