151 research outputs found

    Adrenomedullin haploinsufficiency predisposes to secondary lymphedema

    Get PDF
    Secondary lymphedema is a debilitating condition, and genetic factors predisposing to its development remain largely unknown. Adrenomedullin (AM) is peptide encoded, together with proadrenomedullin N-terminal peptide (PAMP), by the Adm gene (adrenomedullin gene). AM and its putative receptor calcitonin receptor-like receptor (CLR) are implicated in angiogenesis and lymphangiogenesis during embryogenesis and wound healing, suggesting their possible involvement in secondary lymphedema. To investigate whether AM deficiency predisposes to secondary lymphedema, we used heterozygous adult mice with Adm gene-knockin stop mutation, which selectively abrogated AM, but preserved PAMP, expression (Adm(AM+/Δ) animals). After hind limb skin incision, Adm messenger RNA expression was upregulated in wounded tissue of both Adm(AM+/+) and Adm(AM+/Δ) mice. However, only Adm(AM+/Δ) animals developed limb swelling and histopathological lymphedematous changes, including epidermal thickening, elevated collagen fiber density, and increased microvessel diameter. Secondary lymphedema was prevented when circulating AM levels in Adm(AM+/Δ) mice were restored by systemic peptide delivery. In human skin, CLR was expressed in tissue components affected by lymphedema, including epidermis, lymphatics, and blood vessels. Our study identified a previously unrecognized role for endogenous AM as a key factor in secondary lymphedema pathogenesis and provided experimental in vivo evidence of an underlying germ-line genetic predisposition to developing this disorder

    Pulmonary Macrophages Attenuate Hypoxic Pulmonary Vasoconstriction via beta(3)AR/iNOS Pathway in Rats Exposed to Chronic Intermittent Hypoxia

    Get PDF
    Chronic intermittent hypoxia (IH) induces activation of the sympathoadrenal system, which plays a pivotal role in attenuating hypoxic pulmonary vasoconstriction (HPV) via central beta(1)-adrenergic receptors (AR) (brain) and peripheral beta(2)AR (pulmonary arteries). Prolonged hypercatecholemia has been shown to upregulate beta(3)AR. However, the relationship between IH and beta(3)AR in the modification of HPV is unknown. It has been observed that chronic stimulation of beta(3)AR upregulates inducible nitric oxide synthase (iNOS) in cardiomyocytes and that IH exposure causes expression of iNOS in RAW264.7 macrophages. iNOS has been shown to have the ability to dilate pulmonary vessels. Hence, we hypothesized that chronic IH activates beta(3)AR/iNOS signaling in pulmonary macrophages, leading to the promotion of NO secretion and attenuated HPV. Sprague-Dawley rats were exposed to IH (3-min periods of 4-21% O-2) for 8 h/d for 6 weeks. The urinary catecholamine concentrations of IH rats were high compared with those of controls, indicating activation of the sympathoadrenal system following chronic IH. Interestingly, chronic IH induced the migration of circulating monocytes into the lungs and the predominant increase in the number of proinflammatory pulmonary macrophages. In these macrophages, both beta(3)AR and iNOS were upregulated and stimulation of the beta(3)AR/iNOS pathway in vitro caused them to promote NO secretion. Furthermore, in vivo synchrotron radiation microangiography showed that HPV was significantly attenuated in IH rats and the attenuated HPV was fully restored by blockade of beta(3)AR/iNOS pathway or depletion of pulmonary macrophages. These results suggest that circulating monocyte-derived pulmonary macrophages attenuate HPV via activation of beta(3)AR/iNOS signaling in chronic IH

    Soft tissue mixed tumor of the hand

    Get PDF
    Mixed tumors are relatively common in the skin and salivary glands, but extremely rare in soft tissues, often resulting in diagnostic problems. The occurrence of these tumors in the hand is especially limited. In this article we report the clinical, radiological, and histological features of a mixed tumor of the hypothenar region of the right hand

    Maximising Acute Kidney Injury Alerts – A Cross-Sectional Comparison with the Clinical Diagnosis

    Get PDF
    Background Acute kidney injury (AKI) is serious and widespread across healthcare (1 in 7 hospital admissions) but recognition is often delayed causing avoidable harm. Nationwide automated biochemistry alerts for AKI stages 1-3 have been introduced in England to improve recognition. We explored how these alerts compared with clinical diagnosis in different hospital settings. Methods We used a large population cohort of 4464 patients with renal impairment. Each patient had case-note review by a nephrologist, using RIFLE criteria to diagnose AKI and chronic kidney disease (CKD). We identified and staged AKI alerts using the new national NHS England AKI algorithm and compared this with nephrologist diagnosis across hospital settings. Results Of 4464 patients, 525 had RIFLE AKI, 449 had mild AKI, 2185 had CKD (without AKI) and 1305 were of uncertain chronicity. NHS AKI algorithm criteria alerted for 90.5% of RIFLE AKI, 72.4% of mild AKI, 34.1% of uncertain cases and 14.0% of patients who actually had CKD.The algorithm identified AKI particularly well in intensive care (95.5%) and nephrology (94.6%), but less well on surgical wards (86.4%). Restricting the algorithm to stage 2 and 3 alerts reduced the over-diagnosis of AKI in CKD patients from 14.0% to 2.1%, but missed or delayed alerts in two-thirds of RIFLE AKI patients. Conclusion Automated AKI detection performed well across hospital settings, but was less sensitive on surgical wards. Clinicians should be mindful that restricting alerts to stages 2-3 may identify fewer CKD patients, but including stage 1 provides more sensitive and timely alerting

    Rehabilitation after COVID-19. Resolution of the International Expert Council of the Eurasian Association of Therapists and the Russian Society of Cardiology

    Get PDF
    By the middle of 2021, the official global number of coronavirus disease 2019 (COVID-19) patients was close to 230 million, but the number accounting for asymptomatic patients was much higher. Consequences and rehabilitation after COVID-19 are of particular interest and raise many controversial and unresolved issues. On May 18, 2021, the Eurasian Association of Therapists organized an international panel of experts to analyze challenges associated with the post-COVID-19 period. This panel aimed to develop approaches to identify gaps in the discussed issues. This interdisciplinary team of leading experts reviewed the current literature and presented their data to formulate practical guidance on management of patients after COVID-19. The panel of experts also presented recommendations on how to implement the gained knowledge into health care practices

    Anti-fibrotic effects of curcumin and some of its analogues in the heart.

    Get PDF
    Cardiac fibrosis stems from the changes in the expression of fibrotic genes in cardiac fibroblasts (CFs) in response to the tissue damage induced by various cardiovascular diseases (CVDs) leading to their transformation into active myofibroblasts, which produce high amounts of extracellular matrix (ECM) proteins leading, in turn, to excessive deposition of ECM in cardiac tissue. The excessive accumulation of ECM elements causes heart stiffness, tissue scarring, electrical conduction disruption and finally cardiac dysfunction and heart failure. Curcumin (Cur; also known as diferuloylmethane) is a polyphenol compound extracted from rhizomes of Curcuma longa with an influence on an extensive spectrum of biological phenomena including cell proliferation, differentiation, inflammation, pathogenesis, chemoprevention, apoptosis, angiogenesis and cardiac pathological changes. Cumulative evidence has suggested a beneficial role for Cur in improving disrupted cardiac function developed by cardiac fibrosis by establishing a balance between degradation and synthesis of ECM components. There are various molecular mechanisms contributing to the development of cardiac fibrosis. We presented a review of Cur effects on cardiac fibrosis and the discovered underlying mechanisms by them Cur interact to establish its cardio-protective effects

    Adrenomedullin and tumour microenvironment

    Get PDF
    • 

    corecore