5 research outputs found

    New insights into martian atmospheric chemistry

    No full text
    HOx radicals are produced in the martian atmosphere by the photolysis of water vapor and subsequently participate in catalytic cycles that recycle carbon dioxide (CO2) from its photolysis product carbon monoxide (CO), providing a qualitative explanation for the stability of its atmosphere. Balancing CO2 production and loss based on our current understanding of martian gas-phase chemistry has, however, proven to be difficult. The photolysis of O3 produces O(1D), while oxidation of CO produces HOCO radicals, a new member of the HOx family. The O(1D) quantum yield has recently been updated, which quantifies nonzero quantum yields in the Huggins bands. In Earth's atmosphere HOCO is considered to be unimportant since it is quickly removed by abundant oxygen molecules. The smaller amount of O2 in the Mars' atmosphere causes HOCO's lifetime to be longer in Mars' atmosphere than Earth's (3×10-5s to 1.2days from Mars's surface to 240km, respectively). Limited kinetic data on reactions involving HOCO prevented consideration of its reactions directly in atmospheric models. Therefore, the impact of HOCO reactions on martian chemistry is currently unknown. Here, we incorporate new literature rate constants for HOCO chemistry and an updated representation of the O(1D) quantum yield in the Caltech/JPL 1-D photochemical model for Mars' atmosphere. Our simulations exemplify perturbations to NOy, HOx, and COx species, ranging from 5% to 50%. The modified O(1D) quantum yield and new HOCO chemistry cause a 10% decrease and a 50% increase in OH and H2O2 total column abundances, respectively. At low altitudes, HOCO production contributes 5% towards CO2 production. Given recent experimentally-obtained branching ratios for the oxidation of CO, HOCO may contribute up to 70% toward the production of NOy, where HOx and NOy species are enhanced up to a factor 3, which has implications for rethinking the fundamental understanding of NOy, HOx, and CO/CO2 cycling on Mars. Two new reaction mechanisms for converting CO to CO2 using HOCO reactions are proposed, which reveal that H2O2 is more intimately coupled to COx chemistry. Our simulations are in good agreement with satellite/spacecraft measurements of CO and H2O2 on Mars. © 2014.Peer Reviewe

    OBI-3424, a novel AKR1c3-activated prodrug, exhibits potent efficacy against preclinical models of T-ALL

    No full text
    PURPOSE:OBI-3424 is a highly selective prodrug that is converted by aldo-keto reductase family 1 member C3 (AKR1C3) to a potent DNA-alkylating agent. OBI-3424 has entered clinical testing for hepatocellular carcinoma and castrate-resistant prostate cancer, and it represents a potentially novel treatment for acute lymphoblastic leukemia (ALL). EXPERIMENTAL DESIGN:We assessed AKR1C3 expression by RNA-Seq and immunoblotting, and evaluated the in vitro cytotoxicity of OBI-3424. We investigated the pharmacokinetics of OBI-3424 in mice and nonhuman primates, and assessed the in vivo efficacy of OBI-3424 against a large panel of patient-derived xenografts (PDX). RESULTS:AKR1C3 mRNA expression was significantly higher in primary T-lineage ALL (T-ALL; n = 264) than B-lineage ALL (B-ALL; n = 1,740; P < 0.0001), and OBI-3424 exerted potent cytotoxicity against T-ALL cell lines and PDXs. In vivo, OBI-3424 significantly prolonged the event-free survival (EFS) of nine of nine ALL PDXs by 17.1-77.8 days (treated/control values 2.5-14.0), and disease regression was observed in eight of nine PDXs. A significant reduction (P < 0.0001) in bone marrow infiltration at day 28 was observed in four of six evaluable T-ALL PDXs. The importance of AKR1C3 in the in vivo response to OBI-3424 was verified using a B-ALL PDX that had been lentivirally transduced to stably overexpress AKR1C3. OBI-3424 combined with nelarabine resulted in prolongation of mouse EFS compared with each single agent alone in two T-ALL PDXs. CONCLUSIONS:OBI-3424 exerted profound in vivo efficacy against T-ALL PDXs derived predominantly from aggressive and fatal disease, and therefore may represent a novel treatment for aggressive and chemoresistant T-ALL in an AKR1C3 biomarker-driven clinical trial.Kathryn Evans, JianXin Duan, Tara Pritchard, Connor D. Jones, Lisa McDermott ... Charles G. Mullighan ... et al

    Postprandial Hypertriglyceridaemia Revisited in the Era of Non-Fasting Lipid Profile Testing: A 2019 Expert Panel Statement, Narrative Review

    No full text
    corecore