852 research outputs found
Geoengineering the climate: science, governance and uncertainty
Geoengineering, or the deliberate large-scale manipulation of the planetary environment to counteract anthropogenic climate change, has been suggested as a new potential tool for addressing climate change. Efforts to address climate change have primarily focused on mitigation, the reduction of greenhouse gas emissions, and more recently on addressing the impacts of climate change—adaptation. However, international political consensus on the need to reduce emissions has been very slow in coming, and there is as yet no agreement on the emissions reductions needed beyond 2012. As a result global emissions have continued to increase by about 3% per year (Raupach et al. 2007), a faster rate than that projected by the Intergovernmental Panel on Climate Change (IPCC) (IPCC 2001)7 even under its most fossil fuel intensive scenario (A1FI8) in which an increase in global mean temperature of about 4°C (2.4 to 6.4°C) by 2100 is projected (Rahmstorf et al. 2007). The scientifi c community is now becoming increasingly concerned that emissions will not be reduced at the rate and magnitude required to keep the increase in global average temperature below 2°C (above pre-industrial levels) by 2100. Concerns with the lack of progress of the political processes have led to increasing interest in geoengineering approaches. This Royal Society report presents an independent scientifi c review of the range of methods proposed with the aim of providing an objective view on whether geoengineering could, and should, play a role in addressing climate change, and under what conditions
Soil related constraints for sustainable intensification of cereal-based systems in semi-arid central Tanzania
Magnetic Reconnection in Extreme Astrophysical Environments
Magnetic reconnection is a basic plasma process of dramatic rearrangement of
magnetic topology, often leading to a violent release of magnetic energy. It is
important in magnetic fusion and in space and solar physics --- areas that have
so far provided the context for most of reconnection research. Importantly,
these environments consist just of electrons and ions and the dissipated energy
always stays with the plasma. In contrast, in this paper I introduce a new
direction of research, motivated by several important problems in high-energy
astrophysics --- reconnection in high energy density (HED) radiative plasmas,
where radiation pressure and radiative cooling become dominant factors in the
pressure and energy balance. I identify the key processes distinguishing HED
reconnection: special-relativistic effects; radiative effects (radiative
cooling, radiation pressure, and Compton resistivity); and, at the most extreme
end, QED effects, including pair creation. I then discuss the main
astrophysical applications --- situations with magnetar-strength fields
(exceeding the quantum critical field of about 4 x 10^13 G): giant SGR flares
and magnetically-powered central engines and jets of GRBs. Here, magnetic
energy density is so high that its dissipation heats the plasma to MeV
temperatures. Electron-positron pairs are then copiously produced, making the
reconnection layer highly collisional and dressing it in a thick pair coat that
traps radiation. The pressure is dominated by radiation and pairs. Yet,
radiation diffusion across the layer may be faster than the global Alfv\'en
transit time; then, radiative cooling governs the thermodynamics and
reconnection becomes a radiative transfer problem, greatly affected by the
ultra-strong magnetic field. This overall picture is very different from our
traditional picture of reconnection and thus represents a new frontier in
reconnection research.Comment: Accepted to Space Science Reviews (special issue on magnetic
reconnection). Article is based on an invited review talk at the
Yosemite-2010 Workshop on Magnetic Reconnection (Yosemite NP, CA, USA;
February 8-12, 2010). 30 pages, no figure
A study of charged kappa in
Based on events collected by BESII, the decay
is studied. In the invariant mass
spectrum recoiling against the charged , the charged
particle is found as a low mass enhancement. If a Breit-Wigner function of
constant width is used to parameterize the kappa, its pole locates at MeV/. Also in this channel,
the decay is observed for the first time.
Its branching ratio is .Comment: 14 pages, 4 figure
Tuning a Josephson junction through a quantum critical point
We tune the barrier of a Josephson junction through a zero-temperature
metal-insulator transition and study the thermodynamic behavior of the junction
in the proximity of the quantum-critical point. We examine a
short-coherence-length superconductor and a barrier (that is described by a
Falicov-Kimball model) using the local approximation and dynamical mean-field
theory. The inhomogeneous system is self-consistently solved by performing a
Fourier transformation in the planar momentum and exactly inverting the
remaining one-dimensional matrix with the renormalized perturbation expansion.
Our results show a delicate interplay between oscillations on the scale of the
Fermi wavelength and pair-field correlations on the scale of the coherence
length, variations in the current-phase relationship, and dramatic changes in
the characteristic voltage as a function of the barrier thickness or
correlation strength (which can lead to an ``intrinsic'' pinhole effect).Comment: 16 pages, 15 figures, ReVTe
A measurement of the tau mass and the first CPT test with tau leptons
We measure the mass of the tau lepton to be 1775.1+-1.6(stat)+-1.0(syst.) MeV
using tau pairs from Z0 decays. To test CPT invariance we compare the masses of
the positively and negatively charged tau leptons. The relative mass difference
is found to be smaller than 3.0 10^-3 at the 90% confidence level.Comment: 10 pages, 4 figures, Submitted to Phys. Letts.
First Measurement of Z/gamma* Production in Compton Scattering of Quasi-real Photons
We report the first observation of Z/gamma* production in Compton scattering
of quasi-real photons. This is a subprocess of the reaction e+e- to
e+e-Z/gamma*, where one of the final state electrons is undetected.
Approximately 55 pb-1 of data collected in the year 1997 at an e+e-
centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been
analysed. The Z/gamma* from Compton scattering has been detected in the
hadronic decay channel. Within well defined kinematic bounds, we measure the
product of cross-section and Z/gamma* branching ratio to hadrons to be
(0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV,
dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60
GeV, dominated by (e)egamma* production, this product is found to be
(4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo
event generators, grc4f and PYTHIA.Comment: 18 pages, LaTeX, 5 eps figures included, submitted to Physics Letters
- …
