23,901 research outputs found

    Circuit minimizes current drain caused by neon indicator lamps

    Get PDF
    Circuit lights neon lamp by back leakage current of the driving transistor, rather than by the transistors saturation or ''on-state'' current, thereby eliminating lowering of the voltage necessary for indication. Circuit has operating speed greater than indication circuit using a saturation principle and aids in power rationing

    The Local Effects of Cosmological Variations in Physical 'Constants' and Scalar Fields I. Spherically Symmetric Spacetimes

    Full text link
    We apply the method of matched asymptotic expansions to analyse whether cosmological variations in physical `constants' and scalar fields are detectable, locally, on the surface of local gravitationally bound systems such as planets and stars, or inside virialised systems like galaxies and clusters. We assume spherical symmetry and derive a sufficient condition for the local time variation of the scalar fields that drive varying constants to track the cosmological one. We calculate a number of specific examples in detail by matching the Schwarzschild spacetime to spherically symmetric inhomogeneous Tolman-Bondi metrics in an intermediate region by rigorously construction matched asymptotic expansions on cosmological and local astronomical scales which overlap in an intermediate domain. We conclude that, independent of the details of the scalar-field theory describing the varying `constant', the condition for cosmological variations to be measured locally is almost always satisfied in physically realistic situations. The proof of this statement provides a rigorous justification for using terrestrial experiments and solar system observations to constrain or detect any cosmological time variations in the traditional `constants' of Nature.Comment: 30 pages, 3 figures; corrected typo

    A low-luminosity soft state in the short period black hole X-ray binary Swift J1753.5-0127

    Get PDF
    We present results from the spectral fitting of the candidate black hole X-ray binary Swift J1753.5-0127 in an accretion state previously unseen in this source. We fit the 0.7-78 keV spectrum with a number of models, however the preferred model is one of a multi-temperature disk with an inner disk temperature kTin=0.252±0.003\mathrm{k}T_\mathrm{in}=0.252\pm0.003 keV scattered into a steep power-law with photon index Γ=6.390.02+0.08\Gamma=6.39^{+0.08}_{-0.02} and an additional hard power law tail (Γ=1.79±0.02\Gamma=1.79\pm0.02). We report on the emergence of a strong disk-dominated component in the X-ray spectrum and we conclude that the source has entered the soft state for the first time in its ~10 year prolonged outburst. Using reasonable estimates for the distance to the source (33 kpc) and black hole mass (5M5M_{\odot}), we find the unabsorbed luminosity (0.1-100 keV) to be 0.60\approx0.60% of the Eddington luminosity, making this one of the lowest luminosity soft states recorded in X-ray binaries. We also find that the accretion disk extended towards the compact object during its transition from hard to soft, with the inner radius estimated to be Rin=28.00.4+0.7RgR_{\mathrm{in}}=28.0^{+0.7}_{-0.4} R_g or ~12Rg12R_g, dependent on the boundary condition chosen, assuming the above distance and mass, a spectral hardening factor f=1.7f=1.7 and a binary inclination i=55i=55^{\circ}.Comment: 10 pages, 5 figures, accepted for publication in MNRA

    Sustained Id2 regulation of E proteins is required for terminal differentiation of effector CD8+ T cells.

    Get PDF
    CD8+ T cells responding to infection differentiate into a heterogeneous population composed of progeny that are short-lived and participate in the immediate, acute response and those that provide long-lasting host protection. Although it is appreciated that distinct functional and phenotypic CD8+ T cell subsets persist, it is unclear whether there is plasticity among subsets and what mechanisms maintain subset-specific differences. Here, we show that continued Id2 regulation of E-protein activity is required to maintain the KLRG1hi CD8+ T cell population after lymphocytic choriomeningitis virus infection. Induced deletion of Id2 phenotypically and transcriptionally transformed the KLRG1hi "terminal" effector/effector-memory CD8+ T cell population into a KLRG1lo memory-like population, promoting a gene-expression program that resembled that of central memory T cells. Our results question the idea that KLRG1hi CD8+ T cells are necessarily terminally programmed and suggest that sustained regulation is required to maintain distinct CD8+ T cell states

    Demonstration of Einstein-Podolsky-Rosen Steering Using Hybrid Continuous- and Discrete-Variable Entanglement of Light

    Full text link
    Einstein-Podolsky-Rosen steering is known to be a key resource for one-sided device-independent quantum information protocols. Here we demonstrate steering using hybrid entanglement between continuous- and discrete-variable optical qubits. To this end, we report on suitable steering inequalities and detail the implementation and requirements for this demonstration. Steering is experimentally certified by observing a violation by more than 5 standard deviations. Our results illustrate the potential of optical hybrid entanglement for applications in heterogeneous quantum networks that would interconnect disparate physical platforms and encodings

    Electroneutrality and Phase Behavior of Colloidal Suspensions

    Full text link
    Several statistical mechanical theories predict that colloidal suspensions of highly charged macroions and monovalent microions can exhibit unusual thermodynamic phase behavior when strongly deionized. Density-functional, extended Debye-H\"uckel, and response theories, within mean-field and linearization approximations, predict a spinodal phase instability of charged colloids below a critical salt concentration. Poisson-Boltzmann cell model studies of suspensions in Donnan equilibrium with a salt reservoir demonstrate that effective interactions and osmotic pressures predicted by such theories can be sensitive to the choice of reference system, e.g., whether the microion density profiles are expanded about the average potential of the suspension or about the reservoir potential. By unifying Poisson-Boltzmann and response theories within a common perturbative framework, it is shown here that the choice of reference system is dictated by the constraint of global electroneutrality. On this basis, bulk suspensions are best modeled by density-dependent effective interactions derived from a closed reference system in which the counterions are confined to the same volume as the macroions. Linearized theories then predict bulk phase separation of deionized suspensions only when expanded about a physically consistent (closed) reference system. Lower-dimensional systems (e.g., monolayers, small clusters), depending on the strength of macroion-counterion correlations, may be governed instead by density-independent effective interactions tied to an open reference system with counterions dispersed throughout the reservoir, possibly explaining observed structural crossover in colloidal monolayers and anomalous metastability of colloidal crystallites.Comment: 12 pages, 5 figures. Discussion clarified, references adde

    Gas-Liquid Nucleation in Two Dimensional System

    Get PDF
    We study the nucleation of the liquid phase from a supersaturated vapor in two dimensions (2D). Using different Monte Carlo simulation methods, we calculate the free energy barrier for nucleation, the line tension and also investigate the size and shape of the critical nucleus. The study is carried out at an intermediate level of supersaturation(away from the spinodal limit). In 2D, a large cut-off in the truncation of the Lennard-Jones (LJ) potential is required to obtain converged results, whereas low cut-off (say, 2.5σ2.5\sigma is generally sufficient in three dimensional studies, where σ\sigma is the LJ diameter) leads to a substantial error in the values of line tension, nucleation barrier and characteristics of the critical cluster. It is found that in 2D, the classical nucleation theory (CNT) fails to provide a reliable estimate of the free energy barrier. It underestimates the barrier by as much as 70% at the saturation-ratio S=1.1 (defined as S=P/PC, where PC is the coexistence pressure at reduced temperature T=0.427T^{\star}= 0.427). Interestingly, CNT has been found to overestimate the nucleation free energy barrier in three dimensional (3D)systems near the triple point. In fact, the agreement with CNT is worse in 2D than in 3D. Moreover, the existing theoretical estimate of the line tension overestimates the value significantly.Comment: 24 pages, 8 figure

    Events leading up to the June 2015 outburst of V404 Cyg

    Full text link
    On 2015 June 15 the burst alert telescope (BAT) on board {\em Swift} detected an X-ray outburst from the black hole transient V404 Cyg. We monitored V404 Cyg for the last 10 years with the 2-m Faulkes Telescope North in three optical bands (V, R, and i^{'}). We found that, one week prior to this outburst, the optical flux was 0.1--0.3 mag brighter than the quiescent orbital modulation, implying an optical precursor to the X-ray outburst. There is also a hint of a gradual optical decay (years) followed by a rise lasting two months prior to the outburst. We fortuitously obtained an optical spectrum of V404 Cyg 13 hours before the BAT trigger. This too was brighter (1mag\sim1\rm\,mag) than quiescence, and showed spectral lines typical of an accretion disk, with characteristic absorption features of the donor being much weaker. No He II emission was detected, which would have been expected had the X-ray flux been substantially brightening. This, combined with the presence of intense Hα\alpha emission, about 7 times the quiescent level, suggests that the disk entered the hot, outburst state before the X-ray outburst began. We propose that the outburst is produced by a viscous-thermal instability triggered close to the inner edge of a truncated disk. An X-ray delay of a week is consistent with the time needed to refill the inner region and hence move the inner edge of the disk inwards, allowing matter to reach the central BH, finally turning on the X-ray emission.Comment: Accepted by ApJ Letter, 7 pages, 5 figure

    Long term study of the seismic environment at LIGO

    Full text link
    The LIGO experiment aims to detect and study gravitational waves using ground based laser interferometry. A critical factor to the performance of the interferometers, and a major consideration in the design of possible future upgrades, is isolation of the interferometer optics from seismic noise. We present the results of a detailed program of measurements of the seismic environment surrounding the LIGO interferometers. We describe the experimental configuration used to collect the data, which was acquired over a 613 day period. The measurements focused on the frequency range 0.1-10 Hz, in which the secondary microseismic peak and noise due to human activity in the vicinity of the detectors was found to be particularly critical to interferometer performance. We compare the statistical distribution of the data sets from the two interferometer sites, construct amplitude spectral densities of seismic noise amplitude fluctuations with periods of up to 3 months, and analyze the data for any long term trends in the amplitude of seismic noise in this critical frequency range.Comment: To be published in Classical and Quantum Gravity. 24 pages, 15 figure
    corecore