1,618 research outputs found
Herbicide-resistant crops in resistant weed management : An industrial perspective
Parmi les premiers produits issus de la biotechnologie à atteindre le marché se trouvent les cultures résistantes aux herbicides. L'industrie envisage le développement de cultivars résistants aux herbicides comme une façon d'accroître la disponibilité d'herbicides éprouvés pour une gamme de cultures plus vaste. Cependant, le développement de cultures résistantes aux herbicides requiert une attention particulière envers certaines questions environnementales, à savoir l'utilisation des herbicides, la sélection de biotypes de mauvaises herbes résistants et la transmission de gènes de résistance entre ces cultures et des espèces sauvages. L'industrie tente activement de répondre à ces préoccupations pendant le processus de développement. Un développement adéquat et une utilisation judicieuse des cultures résistantes aux herbicides, dans le cadre de programmes de lutte intégrée contre les mauvaises herbes, procureront aux producteurs agricoles une flexibilité et une efficacité accrues, ainsi qu'une diminution des coûts associés à la répression des mauvaises herbes, sans augmenter le risque d'obtenir des mauvaises herbes résistantes aux herbicides. De plus, les cultures résistantes aux herbicides devraient constituer des outils précieux dans la gestion des mauvaises herbes résistantes aux herbicides.Some of the first products of biotechnology to reach the marketplace have been herbicide-resistant crops. Industry sees the development of herbicide-resistant varieties as a way to increase the availability of proven herbicides for a broader range of crops. However, the development of herbicide- resistant crops requires special attention to potential environmental questions such as herbicide usage, selection of resistant weed biotypes and spread of resistance from the resistant crop to wild species. Industry is actively addressing these concerns during the process of development. Proper development and use of herbicide-resistant crops in integrated weed management programs will provide farmers with increased flexibility, efficiency, and decreased cost in their weed control practices without increasing the risk of herbicide-resistant weeds. Furthermore, herbicide-resistant crops should prove to be valuable tools in managing herbicide- resistant weeds
Melting properties of a simple tight-binding model of transition metals: I.The region of half-filled d-band
We present calculations of the free energy, and hence the melting properties,
of a simple tight-binding model for transition metals in the region of d-band
filling near the middle of a d-series, the parameters of the model being
designed to mimic molybdenum. The melting properties are calculated for
pressures ranging from ambient to several Mbar. The model is intended to be the
simplest possible tight-binding representation of the two basic parts of the
energy: first, the pairwise repulsion due to Fermi exclusion; and second, the
d-band bonding energy described in terms of an electronic density of states
that depends on structure. In addition to the number of d-electrons, the model
contains four parameters, which are adjusted to fit the pressure dependent
d-band width and the zero-temperature pressure-volume relation of Mo. We show
that the resulting model reproduces well the phonon dispersion relations of Mo
in the body-centred-cubic structure, as well as the radial distribution
function of the high-temperature solid and liquid given by earlier
first-principles simulations. Our free-energy calculations start from the free
energy of the liquid and solid phases of the purely repulsive pair-potential
model, without d-band bonding. The free energy of the full tight-binding model
is obtained from this by thermodynamic integration. The resulting melting
properties of the model are quite close to those given by earlier
first-principles work on Mo. An interpretation of these melting properties is
provided by showing how they are related to those of the purely repulsive
model.Comment: 34 pages, 12 figures. Accepted for publication in Journal of Chemical
Physic
Melting curve and Hugoniot of molybdenum up to 400 GPa by ab initio simulations
We report ab initio calculations of the melting curve and Hugoniot of
molybdenum for the pressure range 0-400 GPa, using density functional theory
(DFT) in the projector augmented wave (PAW) implementation. We use the
``reference coexistence'' technique to overcome uncertainties inherent in
earlier DFT calculations of the melting curve of Mo. Our calculated melting
curve agrees well with experiment at ambient pressure and is consistent with
shock data at high pressure, but does not agree with the high pressure melting
curve from static compression experiments. Our calculated P(V) and T(P)
Hugoniot relations agree well with shock measurements. We use calculations of
phonon dispersion relations as a function of pressure to eliminate some
possible interpretations of the solid-solid phase transition observed in shock
experiments on Mo.Comment: 8 pages, 6 figure
Analysis of Dislocation Mechanism for Melting of Elements: Pressure Dependence
In the framework of melting as a dislocation-mediated phase transition we
derive an equation for the pressure dependence of the melting temperatures of
the elements valid up to pressures of order their ambient bulk moduli. Melting
curves are calculated for Al, Mg, Ni, Pb, the iron group (Fe, Ru, Os), the
chromium group (Cr, Mo, W), the copper group (Cu, Ag, Au), noble gases (Ne, Ar,
Kr, Xe, Rn), and six actinides (Am, Cm, Np, Pa, Th, U). These calculated
melting curves are in good agreement with existing data. We also discuss the
apparent equivalence of our melting relation and the Lindemann criterion, and
the lack of the rigorous proof of their equivalence. We show that the would-be
mathematical equivalence of both formulas must manifest itself in a new
relation between the Gr\"{u}neisen constant, bulk and shear moduli, and the
pressure derivative of the shear modulus.Comment: 19 pages, LaTeX, 9 eps figure
Evaluating the High School Lunar Research Projects Program
The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA s Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA s and NLSI s objective to train the next generation of scientists, CLSE s High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 168 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research in person
X-ray diffraction measurements of Mo melting to 119 GPa and the high pressure phase diagram
In this paper, we report angle-dispersive X-ray diffraction data of molybdenum melting, measured in a double-sided laser-heated diamond-anvil cell up to a pressure of 119 GPa and temperatures up to 3400 K. The new melting temperatures are in excellent agreement with earlier measurements up to 90 GPa that relied on optical observations of melting and in strong contrast to most theoretical estimates. The X-ray measurements show that the solid melts from the bcc structure throughout the reported pressure range and provide no evidence for a high temperature transition from bcc to a close-packed structure, or to any other crystalline structure. This observation contradicts earlier interpretations of shock data arguing for such a transition. Instead, the values for the Poisson ratios of shock compressed Mo, obtained from the sound speed measurements, and the present X-ray evidence of loss of long-range order suggest that the 210 GPa ( ∼ 4100 K) transition in the shock experiment is from the bcc structure to a new, highly viscous, structured [email protected]
- …