42 research outputs found

    Semiclassical theory of spin-polarized shot noise in mesoscopic diffusive conductors

    Full text link
    We study fluctuations of spin-polarized currents in a three-terminal spin-valve system consisting of a diffusive normal metal wire connected by tunnel junctions to three ferromagnetic terminals. Based on a spin-dependent Boltzmann-Langevin equation, we develop a semiclassical theory of charge and spin currents and the correlations of the currents fluctuations. In the three terminal system, we show that current fluctuations are strongly affected by the spin-flip scattering in the normal metal and the spin polarizations of the terminals, which may point in different directions. We analyze the dependence of the shot noise and the cross-correlations on the spin-flip scattering rate in the full range of the spin polarizations and for different magnetic configurations. Our result demonstrate that noise measurements in multi-terminal devices allow to determine the spin-flip scattering rate by changing the polarizations of ferromagnetic terminals.Comment: 12 pages, 5 figure

    Universality of Shot-Noise in Multiterminal Diffusive Conductors

    Full text link
    We prove the universality of shot-noise in multiterminal diffusive conductors of arbitrary shape and dimension for purely elastic scattering as well as for hot electrons. Using a Boltzmann-Langevin approach we reduce the calculation of shot-noise correlators to the solution of a diffusion equation. We show that shot-noise in multiterminal conductors is a non-local quantity and that exchange effects can occur without quantum phase coherence even at zero electron temperature. Concrete numbers for shot-noise are given that can be tested experimentally.Comment: 4 double-column pages, REVTeX, 1 eps figure embedded with eps

    Minimum-Uncertainty Angular Wave Packets and Quantized Mean Values

    Get PDF
    Uncertainty relations between a bounded coordinate operator and a conjugate momentum operator frequently appear in quantum mechanics. We prove that physically reasonable minimum-uncertainty solutions to such relations have quantized expectation values of the conjugate momentum. This implies, for example, that the mean angular momentum is quantized for any minimum-uncertainty state obtained from any uncertainty relation involving the angular-momentum operator and a conjugate coordinate. Experiments specifically seeking to create minimum-uncertainty states localized in angular coordinates therefore must produce packets with integer angular momentum.Comment: accepted for publication in Physical Review

    Coherent Population Trapping of an Electron Spin in a Single Negatively Charged Quantum Dot

    Full text link
    Coherent population trapping (CPT) refers to the steady-state trapping of population in a coherent superposition of two ground states which are coupled by coherent optical fields to an intermediate state in a three-level atomic system. Recently, CPT has been observed in an ensemble of donor bound spins in GaAs and in single nitrogen vacancy centers in diamond by using a fluorescence technique. Here we report the demonstration of CPT of an electron spin in a single quantum dot (QD) charged with one electron.Comment: to be appeared in Nature Physic
    corecore