55 research outputs found
The brain is a DJ using neuropeptides as sensory crossfaders
Sensory loss induces cross-modal plasticity, often resulting in altered performance in remaining sensory modalities. Whereas much is known about the macroscopic mechanisms underlying cross-modal plasticity, only scant information exists about its cellular and molecular underpinnings. We found that Caenorhabditis elegans nematodes deprived of a sense of body touch exhibit various changes in behavior, associated with other unimpaired senses. We focused on one such behavioral alteration, enhanced odor sensation, and sought to reveal the neuronal and molecular mechanisms that translate mechanosensory loss into improved olfactory acuity. To this end, we analyzed in mechanosensory mutants food-dependent locomotion patterns that are associated with olfactory responses and found changes that are consistent with enhanced olfaction. The altered locomotion could be reversed in adults by optogenetic stimulation of the touch receptor (mechanosensory) neurons. Furthermore, we revealed that the enhanced odor response is related to a strengthening of inhibitory AWC→AIY synaptic transmission in the olfactory circuit. Consistently, inserting in this circuit an engineered electrical synapse that diminishes AWC inhibition of AIY counteracted the locomotion changes in touch-deficient mutants. We found that this cross-modal signaling between the mechanosensory and olfactory circuits is mediated by neuropeptides, one of which we identified as FLP-20. Our results indicate that under normal function, ongoing touch receptor neuron activation evokes FLP-20 release, suppressing synaptic communication and thus dampening odor sensation. In contrast, in the absence of mechanosensory input, FLP-20 signaling is reduced, synaptic suppression is released, and this enables enhanced olfactory acuity; these changes are long lasting and do not represent ongoing modulation, as revealed by optogenetic experiments. Our work adds to a growing literature on the roles of neuropeptides in cross-modal signaling, by showing how activity-dependent neuropeptide signaling leads to specific cross-modal plastic changes in neural circuit connectivity, enhancing sensory performance.status: publishe
Force Generation upon T Cell Receptor Engagement
T cells are major players of adaptive immune response in mammals. Recognition of
an antigenic peptide in association with the major histocompatibility complex at
the surface of an antigen presenting cell (APC) is a specific and sensitive
process whose mechanism is not fully understood. The potential contribution of
mechanical forces in the T cell activation process is increasingly debated,
although these forces are scarcely defined and hold only limited experimental
evidence. In this work, we have implemented a biomembrane force probe (BFP)
setup and a model APC to explore the nature and the characteristics of the
mechanical forces potentially generated upon engagement of the T cell receptor
(TCR) and/or lymphocyte function-associated antigen-1 (LFA-1). We show that upon
contact with a model APC coated with antibodies towards TCR-CD3, after a short
latency, the T cell developed a timed sequence of pushing and pulling forces
against its target. These processes were defined by their initial constant
growth velocity and loading rate (force increase per unit of time). LFA-1
engagement together with TCR-CD3 reduced the growing speed during the pushing
phase without triggering the same mechanical behavior when engaged alone.
Intracellular Ca2+ concentration
([Ca2+]i) was monitored simultaneously
to verify the cell commitment in the activation process.
[Ca2+]i increased a few tens of seconds
after the beginning of the pushing phase although no strong correlation appeared
between the two events. The pushing phase was driven by actin polymerization.
Tuning the BFP mechanical properties, we could show that the loading rate during
the pulling phase increased with the target stiffness. This indicated that a
mechanosensing mechanism is implemented in the early steps of the activation
process. We provide here the first quantified description of force generation
sequence upon local bidimensional engagement of TCR-CD3 and discuss its
potential role in a T cell mechanically-regulated activation process
Sensory Perception of Food and Insulin-Like Signals Influence Seizure Susceptibility
Food deprivation is known to affect physiology and behavior. Changes that occur could be the result of the organism's monitoring of internal and external nutrient availability. In C. elegans, male mating is dependent on food availability; food-deprived males mate with lower efficiency compared to their well-fed counterparts, suggesting that the mating circuit is repressed in low-food environments. This behavioral response could be mediated by sensory neurons exposed to the environment or by internal metabolic cues. We demonstrated that food-deprivation negatively regulates sex-muscle excitability through the activity of chemosensory neurons and insulin-like signaling. Specifically, we found that the repressive effects of food deprivation on the mating circuit can be partially blocked by placing males on inedible food, E. coli that can be sensed but not eaten. We determined that the olfactory AWC neurons actively suppress sex-muscle excitability in response to food deprivation. In addition, we demonstrated that loss of insulin-like receptor (DAF-2) signaling in the sex muscles blocks the ability of food deprivation to suppress the mating circuit. During low-food conditions, we propose that increased activity by specific olfactory neurons (AWCs) leads to the release of neuroendocrine signals, including insulin-like ligands. Insulin-like receptor signaling in the sex muscles then reduces cell excitability via activation of downstream molecules, including PLC-γ and CaMKII
A minimally invasive optical trapping system to understand cellular interactions at onset of an immune response
T-cells and antigen presenting cells are an essential part of the adaptive immune response system and how they interact is crucial in how the body effectively fights infection or responds to vaccines. Much of the experimental work studying interaction forces between cells has looked at the average properties of bulk samples of cells or applied microscopy to image the dynamic contact between these cells. In this paper we present a novel optical trapping technique for interrogating the force of this interaction and measuring relative interaction forces at the single-cell level. A triple-spot optical trap is used to directly manipulate the cells of interest without introducing foreign bodies such as beads to the system. The optical trap is used to directly control the initiation of cell-cell contact and, subsequently to terminate the interaction at a defined time point. The laser beam power required to separate immune cell pairs is determined and correlates with the force applied by the optical trap. As proof of concept, the antigen-specific increase in interaction force between a dendritic cell and a specific T-cell is demonstrated. Furthermore, it is demonstrated that this interaction force is completely abrogated when T- cell signalling is blocked. As a result the potential of using optical trapping to interrogate cellular interactions at the single cell level without the need to introduce foreign bodies such as beads is clearly demonstrated
- …