42 research outputs found

    Expression levels of uridine 5'-diphospho-glucuronosyltransferase genes in breast tissue from healthy women are associated with mammographic density

    Get PDF
    Introduction Mammographic density (MD), as assessed from film screen mammograms, is determined by the relative content of adipose, connective and epithelial tissue in the female breast. In epidemiological studies, a high percentage of MD confers a four to six fold risk elevation of developing breast cancer, even after adjustment for other known breast cancer risk factors. However, the biologic correlates of density are little known. Methods Gene expression analysis using whole genome arrays was performed on breast biopsies from 143 women; 79 women with no malignancy (healthy women) and 64 newly diagnosed breast cancer patients, both included from mammographic centres. Percent MD was determined using a previously validated, computerized method on scanned mammograms. Significance analysis of microarrays (SAM) was performed to identify genes influencing MD and a linear regression model was used to assess the independent contribution from different variables to MD. Results SAM-analysis identified 24 genes differentially expressed between samples from breasts with high and low MD. These genes included three uridine 5'-diphospho-glucuronosyltransferase (UGT) genes and the oestrogen receptor gene (ESR1). These genes were down-regulated in samples with high MD compared to those with low MD. The UGT gene products, which are known to inactivate oestrogen metabolites, were also down-regulated in tumour samples compared to samples from healthy individuals. Several single nucleotide polymorphisms (SNPs) in the UGT genes associated with the expression of UGT and other genes in their vicinity were identified. Conclusions Three UGT enzymes were lower expressed both in breast tissue biopsies from healthy women with high MD and in biopsies from newly diagnosed breast cancers. The association was strongest amongst young women and women using hormonal therapy. UGT2B10 predicts MD independently of age, hormone therapy and parity. Our results indicate that down-regulation of UGT genes in women exposed to female sex hormones is associated with high MD and might increase the risk of breast cancer

    Breast cancer polygenic risk score and contralateral breast cancer risk

    Get PDF
    Previous research has shown that polygenic risk scores (PRSs) can be used to stratify women according to their risk of developing primary invasive breast cancer. This study aimed to evaluate the association between a recently validated PRS of 313 germline variants (PRS313) and contralateral breast cancer (CBC) risk. We included 56,068 women of European ancestry diagnosed with first invasive breast cancer from 1990 onward with follow-up from the Breast Cancer Association Consortium. Metachronous CBC risk (N = 1,027) according to the distribution of PRS313 was quantified using Cox regression analyses. We assessed PRS313 interaction with age at first diagnosis, family history, morphology, ER status, PR status, and HER2 status, and (neo)adjuvant therapy. In studies of Asian women, with limited follow-up, CBC risk associated with PRS313 was assessed using logistic regression for 340 women with CBC compared with 12,133 women with unilateral breast cancer. Higher PRS313 was associated with increased CBC risk: hazard ratio per standard deviation (SD) = 1.25 (95%CI = 1.18–1.33) for Europeans, and an OR per SD = 1.15 (95%CI = 1.02–1.29) for Asians. The absolute lifetime risks of CBC, accounting for death as competing risk, were 12.4% for European women at the 10th percentile and 20.5% at the 90th percentile of PRS313. We found no evidence of confounding by or interaction with individual characteristics, characteristics of the primary tumor, or treatment. The C-index for the PRS313 alone was 0.563 (95%CI = 0.547–0.586). In conclusion, PRS313 is an independent factor associated with CBC risk and can be incorporated into CBC risk prediction models to help improve stratification and optimize surveillance and treatment strategies

    Biomarkers for nutrient intake with focus on alternative sampling techniques

    Full text link

    Methionine metabolism in an animal model of sepsis

    Full text link
    Background: Sepsis is a disease with high incidence and lethality and is accompanied by profound metabolic disturbances. In mammalian methionine metabolism, S-adenosylmethionine (SAM) is produced, which is important in the synthesis of neurotransmitters and glutathione and as an anti-inflammatory agent. The degradation product and antagonist of SAM is S-adenosylhomocysteine (SAH). In this study, we investigated changes in methionine metabolism in a rodent model of sepsis. Methods: Sepsis was induced in male Wistar rats (n=21) by intraperitoneal injection of bacterial lipopolysaccharide (10 mg/kg). Controls (n=18) received vehicle only. Blood was collected by cardiac puncture 24 h later. Puncture of the suboccipital fossa was performed to collect cerebrospinal fluid (CSF). Methionine metabolites were measured using stable isotope dilution tandem mass spectrometry. Plasma total homocysteine and cysteine were measured by HPLC using fluorescence detection. Glutathione was assayed using a modified enzymatic microtiter plate assay. Results: We observed significantly higher plasma levels of SAM (p<0.001) and SAM/SAH ratio (p=0.004) in septic animals. In CSF, there was also a trend for higher levels of SAM in septic animals (p=0.067). Oxidative stress was reflected by an increase in the ratio of oxidized/reduced glutathione in septic animals (p=0.001). Conclusions: Sepsis is associated with an increase in SAM/SAH ratio in plasma and CSF in rodents. This indicates an altered methylation potential during sepsis, which may be relevant for sepsis-associated impairment of transmethylation reactions, circulation and defense against oxidative stress. If verified in humans, such findings could lead to novel strategies for supportive treatment of sepsis, as methionine metabolism can easily be manipulated by dietary strategies
    corecore