126 research outputs found

    Exciton properties in zincblende InGaN-GaN quantum wells under the effects of intense laser fields

    Get PDF
    ABSTRACT: In this work, we study the exciton states in a zincblende InGaN/GaN quantum well using a variational technique. The system is considered under the action of intense laser fields with the incorporation of a direct current electric field as an additional external probe. The effects of these external influences as well as of the changes in the geometry of the heterostructure on the exciton binding energy are discussed in detail

    Quantitative image analysis of polyhydroxyalkanoates inclusions from microbial mixed cultures under different SBR operation strategies

    Get PDF
    Polyhydroxyalkanoates (PHAs) produced from mixed microbial cultures (MMC), regarded as potential substitutes of petrochemical plastics, can be found as intracellular granules in various microorganisms under limited nutrient conditions and excess of carbon source. PHA is traditionally quantified by laborious and time-consuming chromatography analysis, and a simpler and faster method to assess PHA contents from MMC, such as quantitative image analysis (QIA), is of great interest. The main purpose of the present work was to upgrade a previously developed QIA methodology (Mesquita et al., 2013a, 2015) for MMC intracellular PHA contents quantification, increase the studied intracellular PHA concentration range and extend to different sequencing batch reactor (SBR) operation strategies. Therefore, the operation of a new aerobic dynamic feeding (ADF) SBR allowed further extending the studied operating conditions, dataset, and range of the MMC intracellular PHA contents from the previously reported anaerobic/aerobic cycle SBR. Nile Blue A (NBA) staining was employed for epifluorescence microscope visualization and image acquisition, further fed to a custom developed QIA. Data from each of the feast and famine cycles of both SBR were individually processed using chemometrics analysis, obtaining the correspondent partial least squares (PLS) models. The PHA concentrations determined from PLS models were further plotted against the results obtained in the standard chromatographic method. For both SBR the predicted ability was higher at the end of the feast stage than for the famine stage. Indeed, an independent feast and famine QIA data treatment was found to be fundamental to obtain the best prediction abilities. Furthermore, a promising overall correlation (R2 of 0.83) could be found combining the overall QIA data regarding the PHA prediction up to a concentration of 1785.1 mgL-1 (37.3 wt%). Thus, the results confirm that the presented QIA methodology can be seen as promising for estimating higher intracellular PHA concentrations for a larger reactors operation systems and further extending the prediction range of previous studies.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684) and BioTecNorte operation (NORTE01-0145-FEDER-000004) funded by European Regional Development Fundunder the scope ofNorte2020 - ProgramaOperacional Regional do Norte.The authors also acknowledge the financial support to Cristiano S. Leal (PTDC/EBB-EBI/103147/2008, FCOMP-01-0124-FEDER009704) and Daniela P. Mesquita through the FCT postdoctoral grant (SFRH/BPD/82558/2011).info:eu-repo/semantics/publishedVersio

    Angiogenesis inhibitors in the treatment of prostate cancer

    Get PDF
    Prostate cancer remains a significant public health problem, with limited therapeutic options in the setting of castrate-resistant metastatic disease. Angiogenesis inhibition is a relatively novel antineoplastic approach, which targets the reliance of tumor growth on the formation of new blood vessels. This strategy has been used successfully in other solid tumor types, with the FDA approval of anti-angiogenic agents in breast, lung, colon, brain, and kidney cancer. The application of anti-angiogenic therapy to prostate cancer is reviewed in this article, with attention to efficacy and toxicity results from several classes of anti-angiogenic agents. Ultimately, the fate of anti-angiogenic agents in prostate cancer rests on the eagerly anticipated results of several key phase III studies

    Heart rate variability in critical care medicine: a systematic review.

    Get PDF
    BACKGROUND: Heart rate variability (HRV) has been used to assess cardiac autonomic activity in critically ill patients, driven by translational and biomarker research agendas. Several clinical and technical factors can interfere with the measurement and/or interpretation of HRV. We systematically evaluated how HRV parameters are acquired/processed in critical care medicine. METHODS: PubMed, MEDLINE, EMBASE and the Cochrane Central Register of Controlled Trials (1996-2016) were searched for cohort or case-control clinical studies of adult (>18 years) critically ill patients using heart variability analysis. Duplicate independent review and data abstraction. Study quality was assessed using two independent approaches: Newcastle-Ottowa scale and Downs and Black instrument. Conduct of studies was assessed in three categories: (1) study design and objectives, (2) procedures for measurement, processing and reporting of HRV, and (3) reporting of relevant confounding factors. RESULTS: Our search identified 31/271 eligible studies that enrolled 2090 critically ill patients. A minority of studies (15; 48%) reported both frequency and time domain HRV data, with non-normally distributed, wide ranges of values that were indistinguishable from other (non-critically ill) disease states. Significant heterogeneity in HRV measurement protocols was observed between studies; lack of adjustment for various confounders known to affect cardiac autonomic regulation was common. Comparator groups were often omitted (n = 12; 39%). This precluded meaningful meta-analysis. CONCLUSIONS: Marked differences in methodology prevent meaningful comparisons of HRV parameters between studies. A standardised set of consensus criteria relevant to critical care medicine are required to exploit advances in translational autonomic physiology.GLA is supported by a British Journal of Anaesthesia and Royal College of Anaesthetists Basic Science fellowship, British Oxygen Company grant from the Royal College of Anaesthetists and British Heart Foundation programme grant (RG/14/4/3073

    Expression and pharmacological inhibition of TrkB and EGFR in glioblastoma

    Get PDF
    A member of the Trk family of neurotrophin receptors, tropomyosin receptor kinase B (TrkB, encoded by the NTRK2 gene) is an increasingly important target in various cancer types, including glioblastoma (GBM). EGFR is among the most frequently altered oncogenes in GBM, and EGFR inhibition has been tested as an experimental therapy. Functional interactions between EGFR and TrkB have been demonstrated. In the present study, we investigated the role of TrkB and EGFR, and their interactions, in GBM. Analyses of NTRK2 and EGFR gene expression from The Cancer Genome Atlas (TCGA) datasets showed an increase in NTRK2 expression in the proneural subtype of GBM, and a strong correlation between NTRK2 and EGFR expression in glioma CpG island methylator phenotype (G-CIMP+) samples. We showed that when TrkB and EGFR inhibitors were combined, the inhibitory effect on A172 human GBM cells was more pronounced than when either inhibitor was given alone. When U87MG GBM cells were xenografted into the flank of nude mice, tumor growth was delayed by treatment with TrkB and EGFR inhibitors, given alone or combined, only at specific time points. Intracranial GBM growth in mice was not significantly affected by drug treatments. Our findings indicate that correlations between NTRK2 and EGFR expression occur in specific GBM subgroups. Also, our results using cultured cells suggest for the first time the potential of combining TrkB and EGFR inhibition for the treatment of GBM
    corecore