520 research outputs found

    Deep Impact Mission to Tempel 1 Favours New Explosive Cosmogony of Comets

    Get PDF
    The assumption that short-period (SP) comets are fragments of massive icy envelopes of Ganymede-like bodies saturated by products of ice electrolysis that underwent global explosions provides a plausible explanation of all known manifestations of comets, including the jet character of outflows, the presence of ions in the vicinity of the nucleus, the bursts and splitting of cometary nuclei, etc., with solar radiation initiating burning of the products of electrolysis in the nucleus. As shown persuasively by numerical simulation carried out in hydrodynamic approximation, the shock wave initiated by the Deep Impact (DI) impactor in the cometary ice saturated originally by the electrolysis products 2H2 + O2 is capable of activating under certain conditions exothermal reactions (of the type O2 + H2 + organics = H2O + CO + HCN + other products of incomplete burning of organics including its light and heavy pyrolyzed compounds, soot, etc.), which will slow down shock wave damping (forced detonation) and increase many times the energy release. As a result, the measured energetics of ejections and outflows from the crater have to exceed the DI energetics. Analysis of different clusters of the DI experiment data confirms these conclusions and expectations and thus it favours the planetary origin of comets.Comment: 21 pages incluging 3 figure

    Prediction of Ligand Binding Using an Approach Designed to Accommodate Diversity in Protein-Ligand Interactions

    Get PDF
    Computational determination of protein-ligand interaction potential is important for many biological applications including virtual screening for therapeutic drugs. The novel internal consensus scoring strategy is an empirical approach with an extended set of 9 binding terms combined with a neural network capable of analysis of diverse complexes. Like conventional consensus methods, internal consensus is capable of maintaining multiple distinct representations of protein-ligand interactions. In a typical use the method was trained using ligand classification data (binding/no binding) for a single receptor. The internal consensus analyses successfully distinguished protein-ligand complexes from decoys (r2, 0.895 for a series of typical proteins). Results are superior to other tested empirical methods. In virtual screening experiments, internal consensus analyses provide consistent enrichment as determined by ROC-AUC and pROC metrics

    A photometric study of faint galaxies in the field of GRB000926

    Full text link
    We present our B, V, Rc, and Ic observations of a 3.6' x 3' field centered on the host galaxy of GRB000926 (RA(2000.0)=17h04m11s, DEC(2000.0)=+51d47'9.8''). The observations were carried out on the 6-m Special Astrophysical Observatory telescope using the SCORPIO instrument. The catalog of galaxies detected in this field includes 264 objects for which the signal-to-noise ratio is larger than 5 in each photometric band. The following limiting magnitudes in the catalog correspond to this limitation: 26.6(B), 25.7(V), 25.8(Rc), and 24.5(Ic). The differential galaxy counts are in good agreement with previously published CCD observations of deep fields. We estimated the photometric redshifts for all of the cataloged objects and studied the color variations of the galaxies with Z. For luminous spiral galaxies with M(B) < -18, we found no evidence for any noticeable evolution of their linear sizes to Z~1.Comment: 10 pages, 7 figure

    The Transmembrane Domain of CEACAM1-4S Is a Determinant of Anchorage Independent Growth and Tumorigenicity

    Get PDF
    CEACAM1 is a multifunctional Ig-like cell adhesion molecule expressed by epithelial cells in many organs. CEACAM1-4L and CEACAM1-4S, two isoforms produced by differential splicing, are predominant in rat liver. Previous work has shown that downregulation of both isoforms occurs in rat hepatocellular carcinomas. Here, we have isolated an anchorage dependent clone, designated 253T-NT that does not express detectable levels of CEACAM1. Stable transfection of 253-NT cells with a wild type CEACAM1-4S expression vector induced an anchorage independent growth in vitro and a tumorigenic phenotype in vivo. These phenotypes were used as quantifiable end points to examine the functionality of the CEACAM1-4S transmembrane domain. Examination of the CEACAM1 transmembrane domain showed N-terminal GXXXG dimerization sequences and C-terminal tyrosine residues shown in related studies to stabilize transmembrane domain helix-helix interactions. To examine the effects of transmembrane domain mutations, 253-NT cells were transfected with transmembrane domain mutants carrying glycine to leucine or tyrosine to valine substitutions. Results showed that mutation of transmembrane tyrosine residues greatly enhanced growth in vitro and in vivo. Mutation of transmembrane dimerization motifs, in contrast, significantly reduced anchorage independent growth and tumorigenicity. 253-NT cells expressing CEACAM1-4S with both glycine to leucine and tyrosine to valine mutations displayed the growth-enhanced phenotype of tyrosine mutants. The dramatic effect of transmembrane domain mutations constitutes strong evidence that the transmembrane domain is an important determinant of CEACAM1-4S functionality and most likely by other proteins with transmembrane domains containing dimerization sequences and/or C-terminal tyrosine residues

    Oceanic Sharks Clean at Coastal Seamount

    Get PDF
    Interactions between pelagic thresher sharks (Alopias pelagicus) and cleaner wrasse were investigated at a seamount in the Philippines. Cleaning associations between sharks and teleosts are poorly understood, but the observable interactions seen at this site may explain why these mainly oceanic sharks regularly venture into shallow coastal waters where they are vulnerable to disturbance from human activity. From 1,230 hours of observations recorded by remote video camera between July 2005 and December 2009, 97 cleaner-thresher shark events were analyzed, 19 of which were interrupted. Observations of pelagic thresher sharks interacting with cleaners at the seamount were recorded at all times of day but their frequency declined gradually from morning until evening. Cleaners showed preferences for foraging on specific areas of a thresher shark's body. For all events combined, cleaners were observed to conduct 2,757 inspections, of which 33.9% took place on the shark's pelvis, 23.3% on the pectoral fins, 22.3% on the caudal fin, 8.6% on the body, 8.3% on the head, 2.1% on the dorsal fin, and 1.5% on the gills respectively. Cleaners did not preferentially inspect thresher sharks by time of day or by shark sex, but there was a direct correlation between the amount of time a thresher shark spent at a cleaning station and the number of inspections it received. Thresher shark clients modified their behavior by “circular-stance-swimming,” presumably to facilitate cleaner inspections. The cleaner-thresher shark association reflected some of the known behavioral trends in the cleaner-reef teleost system since cleaners appeared to forage selectively on shark clients. Evidence is mounting that in addition to acting as social refuges and foraging grounds for large visiting marine predators, seamounts may also support pelagic ecology by functioning as cleaning stations for oceanic sharks and rays

    Computational Analysis of Whole-Genome Differential Allelic Expression Data in Human

    Get PDF
    Allelic imbalance (AI) is a phenomenon where the two alleles of a given gene are expressed at different levels in a given cell, either because of epigenetic inactivation of one of the two alleles, or because of genetic variation in regulatory regions. Recently, Bing et al. have described the use of genotyping arrays to assay AI at a high resolution (∼750,000 SNPs across the autosomes). In this paper, we investigate computational approaches to analyze this data and identify genomic regions with AI in an unbiased and robust statistical manner. We propose two families of approaches: (i) a statistical approach based on z-score computations, and (ii) a family of machine learning approaches based on Hidden Markov Models. Each method is evaluated using previously published experimental data sets as well as with permutation testing. When applied to whole genome data from 53 HapMap samples, our approaches reveal that allelic imbalance is widespread (most expressed genes show evidence of AI in at least one of our 53 samples) and that most AI regions in a given individual are also found in at least a few other individuals. While many AI regions identified in the genome correspond to known protein-coding transcripts, others overlap with recently discovered long non-coding RNAs. We also observe that genomic regions with AI not only include complete transcripts with consistent differential expression levels, but also more complex patterns of allelic expression such as alternative promoters and alternative 3′ end. The approaches developed not only shed light on the incidence and mechanisms of allelic expression, but will also help towards mapping the genetic causes of allelic expression and identify cases where this variation may be linked to diseases
    corecore