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Abstract
For a sequence of i.i.d. random variables {X ,Xn ,n ≥ 1} and a sequence of positive real
numbers {an,n ≥ 1} with 0 < an/n1/p ↑ for some 0 < p < 2, the Baum-Katz complete
convergence theorem is extended to the {X ,Xn ,n ≥ 1} with the general moment
condition

∑∞
n=1 n

r–1P{|X| > an} <∞, where r ≥ 1. The relationship between the
complete convergence and the strong law of large numbers is established.
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1 Introduction and main result
The concept of complete convergence was first introduced by Hsu and Robbins [] and
has played a very important role in probability theory. A sequence of random variables
{Un, n ≥ } is said to converge completely to a constant C if

∑∞
n= P{|Un – C| > ε} < ∞ for

any ε > . Hsu and Robbins [] proved that the sequence of arithmetic means of inde-
pendent and identically distributed (i.i.d.) random variables converges completely to the
expected value if the variance of the summands is finite. Their result has been generalized
and extended by many authors.

The following result is well known.

Theorem A Let r ≥  and  < p < . Let {X, Xn, n ≥ } be a sequence of i.i.d. random vari-
ables with partial sums Sn =

∑n
k= Xk , n ≥ . Then the following statements are equivalent:

E|X|rp < ∞, (.)
∞∑

n=

nr–P
{|Sn – nb| > εn/p} < ∞ ∀ε > , (.)

∞∑

n=

nr–P
{

max
≤m≤n

|Sm – mb| > εn/p
}

< ∞ ∀ε > , (.)

where b =  if  < rp <  and b = EX if rp ≥ .
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When r = , each of (.)∼(.) is equivalent to

Sn – nb
n/p →  a.s. (.)

When r = , the equivalence of (.) and (.) is known as the Marcinkiewicz and Zyg-
mund strong law of large numbers. Katz [] proved the equivalence of (.) and (.) for
the case of p = . Baum and Katz [] proved the equivalence of (.) and (.) for the case
of  < p < . The result of Baum and Katz was generalized and extended in several direc-
tions. Some versions of the Baum and Katz theorem under higher-order moment condi-
tions were established by Lanzinger [], Gut and Stadtmüller [], and Chen and Sung [].
When p = ,  ≤ r < , and {Xn, n ≥ } is a sequence of pairwise independent, but not nec-
essarily identically distributed, random variables, Spătaru [] gave sufficient conditions for
(.).

It is interesting to find more general moment conditions such that the complete conver-
gence holds. In fact, Li et al. [] and Sung [] have done something. In particular, it is worth
pointing out that Sung [] obtained the following complete convergence for pairwise i.i.d.
random variables {X, Xn, n ≥ }:

∞∑

n=

n–P

{∣
∣
∣
∣
∣

n∑

k=

Xk – nEXI
(|X| ≤ an

)
∣
∣
∣
∣
∣

> εan

}

< ∞ ∀ε > ,

provided that
∑∞

n= P{|X| > an} < ∞, where  < an/n ↑.
Motivated by the work of Sung [], the aim of this paper is to obtain the complete con-

vergence under more general moment conditions. Our main result includes the Baum and
Katz [] complete convergence and the Marcinkiewicz and Zygmund strong law of large
numbers.

Now we state the main result. Some lemmas and the proof of the main result will be
detailed in next section.

Theorem . Let r ≥  and  < p < . Let {X, Xn, n ≥ } be a sequence of i.i.d. random
variables with partial sums Sn =

∑n
k= Xk , n ≥ , and {an, n ≥ } a sequence of positive real

numbers with  < an/n/p ↑. Then the following statements are equivalent:

∞∑

n=

nr–P
{|X| > an

}
< ∞, (.)

∞∑

n=

nr–P
{|Sn – nbn| > εan

}
< ∞ ∀ε > , (.)

∞∑

n=

nr–P
{

max
≤m≤n

|Sm – mbn| > εan

}
< ∞ ∀ε > , (.)

where bn =  if  < p <  and bn = EXI(|X| ≤ an) if  ≤ p < .

When r = , each of (.)-(.) is equivalent to

a–
n (Sn – nbn) →  a.s. (.)
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Remark . When an = n/p for n ≥ , (.) is equivalent to (.). In this case, a–
n ·

nEXI(|X| > an) →  if  ≤ p <  and (.) holds. Hence, (.) ⇒ (.), (.) ⇒ (.), and
(.) ⇒ (.) (in this case, r = ) follow from Theorem .. Although the converses do not
follow directly from Theorem ., the proofs can be done easily. When an = n/p(ln n)α for
n ≥ , where α > , (.) is equivalent to E|X|rp/(ln(|X| + ))αrp < ∞.

Throughout this paper, the symbol C denotes a positive constant that is not necessarily
the same one in each appearance, and I(A) denotes the indicator function of an event A.

2 Lemmas and proofs
To prove the main result, the following lemmas are needed. Lemma . is the Rosenthal
inequality for the sum of independent random variables; see, for example, Petrov [].

Lemma . Let {Yn, n ≥ } be a sequence of independent random variables with EYn =
 and E|Yn|s < ∞ for some s ≥  and all n ≥ . Then there exists a positive constant C
depending only on s such that for all n ≥ ,

E max
≤m≤n

∣
∣
∣
∣
∣

m∑

k=

Yk

∣
∣
∣
∣
∣

s

≤ C

{ n∑

k=

E|Yk|s +

( n∑

k=

EY 
k

)s/}

.

Lemma . Under the assumptions of Theorem ., if  < p <  and (.) holds, then

a–
n · nEXI

(|X| ≤ an
) → 

as n → ∞.

Proof Since  < p < , by  < an/n/p ↑ we have  < an/n ↑ ∞. By (.) we have

∞∑

n=

P
{|X| > an

}
< ∞.

Therefore, by Lemma . in Sung [] we have the desired result. �

Lemma . Under the assumptions of Theorem ., if rp ≥  and (.) holds, then

a–
n · nE|X|I

(|X| ≤ an
) ≤ Cn–/p.

Proof By  < an/n/p ↑ we have ak/an ≤ (k/n)/p for any  ≤ k ≤ n. Hence,

a–
n · nE|X|I

(|X| ≤ an
)

= a–
n · n

n∑

k=

E|X|I
(
ak– < |X| ≤ ak

)
(set a = )

≤ a–
n · n

n∑

k=

a
kP

{
ak– < |X| ≤ ak

}

≤ n–/p
n∑

k=

k/pP
{

ak– < |X| ≤ ak
}
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≤ n–/p
n∑

k=

krP
{

ak– < |X| ≤ ak
}

(by rp ≥ )

≤ n–/p
∞∑

k=

[
(k + )r – kr]P

{|X| > ak
}

≤ n–/p ·
(

 + rr–
∞∑

k=

kr–P
{|X| > ak

}
)

.

Set C =  + rr– ∑∞
k= kr–P{|X| > ak}. By (.), C < ∞. So we complete the proof. �

Lemma . Under the assumptions of Theorem ., if s > rp and (.) holds, then

∞∑

n=

nr– · a–s
n nE|X|sI(|X| ≤ an

)
< ∞.

Proof By  < an/n/p ↑ we have ak/an ≤ (k/n)/p for any n ≥ k. Hence,

∞∑

n=

nr– · a–s
n nE|X|sI(|X| ≤ an

)
=

∞∑

n=

nr–a–s
n

n∑

k=

E|X|sI(ak– < |X| ≤ ak
)

≤
∞∑

n=

nr–a–s
n

n∑

k=

as
kP

{
ak– < |X| ≤ ak

}

=
∞∑

k=

as
kP

{
ak– < |X| ≤ ak

} ∞∑

n=k

nr–a–s
n

≤
∞∑

k=

ks/pP
{

ak– < |X| ≤ ak
} ∞∑

n=k

nr––s/p

≤ C
∞∑

k=

krP
{

ak– < |X| ≤ ak
}

< ∞.

Therefore, the proof is completed. �

Lemma . Let {X, Xn ≥ } be a sequence of i.i.d. symmetric random variables, and
{an, n ≥ } a sequence of real numbers with  < an ↑ ∞. Suppose that

∞∑

n=

n–P

{∣
∣
∣
∣
∣

n∑

k=

Xk

∣
∣
∣
∣
∣

> εan

}

< ∞ ∀ε > . (.)

Then

a–
n

n∑

k=

Xk →  in probability. (.)

Proof Set Sn =
∑n

k= Xk , n ≥ . Note that for all ε > ,

P
{|Sn+| > εan+

} ≤ P
{|Sn| > εan+/

}
+ P

{|Xn+| > εan+/
}

≤ P
{|Sn| > εan/

}
+ P

{|X| > εan+/
}
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and P{|X| > εan+/} →  as n → ∞. Hence, to prove (.), it suffices to prove that

a–
nSn →  in probability. (.)

We will prove (.) by contradiction. Suppose that there exist a constant ε >  and a se-
quence of integers {ni, i ≥ } with ni ↑ ∞ such that

P
{|Sni | > εani

} ≥ ε for all i ≥ .

Without loss of generality, we can assume that ni < ni+. By the Lévy inequality (see, for
example, formula (.) in Ledoux and Talagrand []) we have

∞∑

n=

n–P
{|Sn| > εan/

} ≥ 


∞∑

n=

n–P
{

max
≤k≤n

|Sk| > εan/
}

≥ 


∞∑

i=

ni∑

n=ni+

n–P
{

max
≤k≤n

|Sk| > εan/
}

≥ 


∞∑

i=

ni∑

n=ni+

n–P
{

max
≤k≤ni

|Sk| > εani /
}

≥ 


∞∑

i=

ni∑

n=ni+

n–P
{|Sni | > εani /

}

=



∞∑

i=

ni∑

n=ni+

n–(P
{|Sni | > εani /

}
+ P

{|Sni – Sni | > εani /
})

≥ 


∞∑

i=

ni∑

n=ni+

n–P
{|Sni | > εani

}

≥ ε



∞∑

i=

ni∑

n=ni+

n– = ∞,

which leads a contradiction to (.). Hence, (.) holds, and so the proof is completed. �

Proof of Theorem . We first prove that (.) implies (.). By Lemma ., to prove (.),
it suffices to prove that

∞∑

n=

nr–P

{

max
≤m≤n

∣
∣
∣
∣
∣

m∑

k=

(
Xk – EXkI

(|Xk| ≤ an
))

∣
∣
∣
∣
∣

> εan

}

< ∞ ∀ε > . (.)

Note that
{

max
≤m≤n

∣
∣
∣
∣
∣

m∑

k=

(
Xk – EXkI

(|Xk| ≤ an
))

∣
∣
∣
∣
∣

> εan

}

⊂
n⋃

k=

{|Xk| > an
} ∪

{

max
≤m≤n

∣
∣
∣
∣
∣

m∑

k=

(
XkI

(|Xk| ≤ an
)

– EXkI
(|Xk| ≤ an

))
∣
∣
∣
∣
∣

> εan

}

.
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Hence, by (.), to prove (.) it suffices to prove that for all ε > ,

∞∑

n=

nr–P

{

max
≤m≤n

∣
∣
∣
∣
∣

m∑

k=

(
XkI

(|Xk| ≤ an
)

– EXkI
(|Xk| ≤ an

))
∣
∣
∣
∣
∣

> εan

}

< ∞. (.)

For any s ≥ , by the Markov inequality and Lemma .,

∞∑

n=

nr–P

{

max
≤m≤n

∣
∣
∣
∣
∣

m∑

k=

(
XkI

(|Xk| ≤ an
)

– EXkI
(|Xk| ≤ an

))
∣
∣
∣
∣
∣

> εan

}

≤ C
∞∑

n=

nr–a–s
n E max

≤m≤n

∣
∣
∣
∣
∣

m∑

k=

(
XkI

(|Xk| ≤ an
)

– EXkI
(|Xk| ≤ an

))
∣
∣
∣
∣
∣

s

≤ C

( ∞∑

n=

nr–{a–
n nEXI

(|X| ≤ an
)}s/ +

∞∑

n=

nr–a–s
n E|X|sI(|X| ≤ an

)
)

= C(I + I).

If rp ≥ , taking s large enough such that r –  – s/p + s/ < –, by Lemma . we have

I ≤ C
∞∑

n=

nr––s/p+s/ < ∞.

Since s > rp, I < ∞ by Lemma .. If  < rp < , taking s =  (in this case I = I), we have
I = I < ∞ by Lemma . again. Hence, (.) holds for all ε > .

It is trivial that (.) implies (.). Now we prove that (.) implies (.). Let {X ′, X ′
n, n ≥ }

be an independent copy of {X, Xn, n ≥ }. Then we also have

∞∑

n=

nr–P

{∣
∣
∣
∣
∣

n∑

k=

X ′
k – nbn

∣
∣
∣
∣
∣

> εan

}

< ∞ ∀ε > .

Hence,

∞∑

n=

nr–P

{∣
∣
∣
∣
∣

n∑

k=

(
Xk – X ′

k
)
∣
∣
∣
∣
∣

> εan

}

< ∞ ∀ε > ,

from which it follows that

∞∑

n=

n–P

{∣
∣
∣
∣
∣

n∑

k=

(
Xk – X ′

k
)
∣
∣
∣
∣
∣

> εan

}

< ∞ ∀ε > .

Then, by Lemma .,

a–
n

n∑

k=

(
Xk – X ′

k
) →  in probability.
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By the Lévy inequality (see, for example, formula (.) in Ledoux and Talagrand []), for
any fixed ε > ,

P
{

max
≤k≤n

∣
∣Xk – X ′

k
∣
∣ > εan

}
≤ P

{∣
∣
∣
∣
∣

n∑

k=

(
Xk – X ′

k
)
∣
∣
∣
∣
∣

> εan

}

→ 

as n → ∞. Then, for all n large enough,

P
{

max
≤k≤n

∣
∣Xk – X ′

k
∣
∣ > εan

}
≤ /.

Therefore, by Lemma . in Ledoux and Talagrand [] and the Lévy inequality (see for-
mula (.) in Ledoux and Talagrand []) we have that for all n large enough,

nP
{∣
∣X – X ′∣∣ > εan

}
=

n∑

k=

P
{∣
∣Xk – X ′

k
∣
∣ > εan

}

≤ P
{

max
≤k≤n

∣
∣Xk – X ′

k
∣
∣ > εan

}
≤ P

{∣
∣
∣
∣
∣

n∑

k=

(
Xk – X ′

k
)
∣
∣
∣
∣
∣

> εan

}

.

Therefore,

∞∑

n=

nr–P
{∣
∣X – X ′∣∣ > εan

}
< ∞ ∀ε > . (.)

Since P{|X| > an/} →  as n → ∞, |med(X)/(an/)| ≤  for all n large enough. By the
weak symmetrization inequality we have that for all n large enough,

P
{|X| > an

} ≤ P
{∣
∣X – med(X)

∣
∣ > an/

} ≤ P
{∣
∣X – X ′∣∣ > an/

}
, (.)

which, together with (.), implies that (.) holds.
Finally, we prove that (.) and (.) are equivalent when r = . Assume that (.) holds

for r = . Since
∑∞

i= iP{ai < |X| ≤ ai+} =
∑∞

n= P{|X| > an} < ∞, for any fixed ε > , there
exists a positive integer N such that

∑∞
i=N+ iP{ai < |X| ≤ ai+} < ε. Then, for n > N + ,

∣
∣
∣
∣
∣
a–

n · nEXI
(|X| ≤ an

)
– a–

n

n∑

k=

EXI
(|X| ≤ ak

)
∣
∣
∣
∣
∣

≤ a–
n

n–∑

k=

E|X|I(ak < |X| ≤ an
)

= a–
n

n–∑

k=

n–∑

i=k

E|X|I(ai < |X| ≤ ai+
)

= a–
n

n–∑

i=

iE|X|I(ai < |X| ≤ ai+
)

≤ a–
n

N∑

i=

iE|X|I(ai < |X| < ai+
)

+
n–∑

i=N+

iP
{

ai < |X| ≤ ai+
}
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≤ a–
n

N∑

i=

iE|X|I(ai < |X| < ai+
)

+ ε

→ ε as n → ∞.

It follows that
∣
∣
∣
∣
∣
a–

n · nEXI
(|X| ≤ an

)
– a–

n

n∑

k=

EXI
(|X| ≤ ak

)
∣
∣
∣
∣
∣
→ 

as n → ∞. Hence, to prove (.), by Lemma . it suffices to prove that

a–
n

n∑

k=

(
XkI

(|X| ≤ ak
)

– EXkI
(|X| ≤ ak

)) →  a.s. (.)

Since  < an/n/p ↑ and  < p < ,

∞∑

n=

a–
n Var

(
XnI

(|X| ≤ an
))

≤
∞∑

n=

a–
n EXI

(|X| ≤ an
)

=
∞∑

n=

a–
n

n∑

k=

EXI
(
ak– < |X| ≤ ak

)
(set a = )

≤
∞∑

k=

a
kP

{
ak– < |X| ≤ ak

} ∞∑

n=k

a–
n

≤ C
∞∑

k=

kP
{

ak– < |X| ≤ ak
}

< ∞.

Then by the Kolmogorov convergence criterion and the Kronecker lemma, (.) holds,
and so (.) also holds.

Conversely, assume that (.) holds. Let {X ′, X ′
n, n ≥ } be an independent copy of

{X, Xn, n ≥ }. Then we also have

a–
n

( n∑

k=

X ′
k – nbn

)

→  a.s.

Hence, we have

a–
n

n∑

k=

(
Xk – X ′

k
) →  a.s.

So, we have by  < an ↑ that

a–
n

(
Xn – X ′

n
)

= a–
n

n∑

k=

(
Xk – X ′

k
)

–
(
an–a–

n
)
a–

n–

n–∑

k=

(
Xk – X ′

k
) →  a.s.
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By the Borel-Cantelli lemma,

∞∑

n=

P
{∣
∣Xn – X ′

n
∣
∣ > εan

}
< ∞ ∀ε > ,

which, together with (.), implies that (.) holds for r = . So we complete the proof. �

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors read and approved the manuscript.

Author details
1Department of Mathematics, Jinan University, Guangzhou, 510630, P.R. China. 2Department of Statistics, Jinan University,
Guangzhou, 510630, P.R. China. 3Department of Applied Mathematics, Pai Chai University, Taejon, 302-735, South Korea.

Acknowledgements
The authors would like to thank the referees for the helpful comments. The research of Pingyan Chen and Jiaming Yi is
supported by the National Natural Science Foundation of China (No. 11271161). The research of Soo Hak Sung is
supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the
Ministry of Education (2014R1A1A2058041).

Received: 1 September 2015 Accepted: 9 December 2015

References
1. Hsu, PL, Robbins, H: Complete convergence and the law of large numbers. Proc. Natl. Acad. Sci. USA 33, 25-31 (1947)
2. Katz, M: The probability in the tail of a distribution. Ann. Math. Stat. 34, 312-318 (1963)
3. Baum, LE, Katz, M: Convergence rates in the law of large numbers. Trans. Am. Math. Soc. 120, 108-123 (1965)
4. Lanzinger, H: A Baum-Katz theorem for random variables under exponential moment conditions. Stat. Probab. Lett.

39, 89-95 (1998)
5. Gut, A, Stadtmüller, U: An intermediate Baum-Katz theorem. Stat. Probab. Lett. 81, 1486-1492 (2011)
6. Chen, P, Sung, SH: A Baum-Katz theorem for i.i.d. random variables with higher order moments. Stat. Probab. Lett. 94,

63-68 (2014)
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