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Abstract
Baum and Katz (Trans. Am. Math. Soc. 120:108-123, 1965) obtained convergence rates
in the Marcinkiewicz-Zygmund law of large numbers. Their result has already been
extended to the short-range dependent linear processes by many authors. In this
paper, we extend the result of Baum and Katz to the long-range dependent linear
processes. As a corollary, we obtain convergence rates in the Marcinkiewicz-Zygmund
law of large numbers for short-range dependent linear processes.

MSC: 60F15

Keywords: linear process; convergence rate; Marcinkiewicz-Zygmund law of large
numbers

1 Introduction
There are many literature works concerning the convergence rates in the Marcinkiewicz-
Zygmund law of large numbers. One can refer to Alf [], Alsmeyer [], Baum and Katz [],
Heyde and Rohatgi [], Hu and Weber [], Rohatgi [], and so on.

Baum and Katz [] obtained the following convergence rates in the Marcinkiewicz-
Zygmund law of large numbers.

Theorem . (Baum and Katz []) Let r ≥ ,  ≤ p <  and {X, Xn, n ≥ } be a sequence
of independent and identically distributed (i.i.d.) random variables. Then EX =  and
E|X|rp < ∞ imply

∞∑

n=

nr–P

(∣∣∣∣∣

n∑

k=

Xk

∣∣∣∣∣ > n/pε

)
< ∞ for all ε > .

When r = , the cases of p =  and  ≤ p <  have already been proved by Hsu and Rob-
bins [] and Katz [], respectively.

Let {ζi, i ∈ Z} be a sequence of i.i.d. random variables and {ai, i ∈ Z} be a sequence of real
numbers. Here and in the following, Z denotes the set of all integers. Then {Xn, n ≥ } is
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called a linear process or an infinite order moving average process if Xn is defined by

Xn =
∞∑

i=–∞
ai+nζi for n ≥ . (.)

If
∑∞

i=–∞ |ai| < ∞, then {Xn, n ≥ } has short memory or is short-range dependent. If∑∞
i=–∞ |ai| = ∞, then {Xn, n ≥ } has long memory or is long-range dependent (see Chap-

ter  in Giraitis et al. []).
In the short-range dependent case, Koopmans [] showed that if ζ has the moment

generating function, then the strong law of large numbers for the linear process holds
with exponential convergence rate. Hanson and Koopmans [] generalized this result to a
class of linear processes of independent but non-identically distributed random variables
{ζi, i ∈ Z} and to arbitrary subsequences of {Xn, n ≥ }. Li et al. [] extended Katz []
theorem to the setting of short-range dependent linear processes.

Theorem . (Li et al. []) Let  ≤ p < . Let {ai, i ∈ Z} be an absolutely summable se-
quence of real numbers. Suppose that {Xn, n ≥ } is the linear process of a sequence {ζi, i ∈ Z}
of i.i.d. random variables with mean zero and E|ζ|p < ∞. Then

∞∑

n=

P

(∣∣∣∣∣

n∑

k=

Xk

∣∣∣∣∣ > n/pε

)
< ∞ for all ε > .

Note that Theorem . corresponds to Theorem . with r = . Zhang [] extended
Theorem . with r >  to the short-range dependent linear process of a sequence of iden-
tically distributed ϕ-mixing random variables. Since independent random variables are
also ϕ-mixing, it follows by Zhang [] theorem that Theorem . also holds for r > .

In this paper, we obtain convergence rates in the Marcinkiewicz-Zygmund law of large
numbers for long-range dependent linear processes of i.i.d. random variables. For conve-
nience of notation, let

Wn(t) =

( ∞∑

i=–∞
|ωni|t

)/t

for n ≥  and t > ,

where ωni =
∑n

k= ai+k . In the long-range dependent case, Characiejus and Račkauskas []
obtained the convergence rate in the Marcinkiewicz-Zygmund law of large numbers for
the linear process {Yn, n ≥ } which is slightly different from (.) and defined by

Yn =
∞∑

i=

aiζn–i for n ≥ , (.)

where ai =  if i < .

Theorem . (Characiejus and Račkauskas []) Let {Yn, n ≥ } be defined as above and
 < p < . Let {ai, i ∈ Z} be a sequence of real numbers such that

∞∑

i=–∞
|ai|p < ∞,
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where ai =  if i < . Assume that

Wn(q)/Wn(p) = O
(
n/q–/p) for some q ∈ (p, ].

If Eζ =  and E[|ζ|p log( + |ζ|)] < ∞, then

∞∑

n=

n–P

(∣∣∣∣∣

n∑

k=

Yk

∣∣∣∣∣ > Wn(p)ε

)
< ∞ for all ε > . (.)

The above theorem shows a convergence rate in the Marcinkiewicz-Zygmund weak law
of large numbers with the norming sequence Wn(p).

We now compare Theorem . with Theorem .. Since Theorem . deals with only the
case r = , it is interesting to prove that Theorem . holds for the case r > . When r = ,
Theorem . requires a finite pth moment condition, but Theorem . requires more than
finite pth moment. To apply Theorem ., it is necessary to estimate Wn(p). If {ai, i ∈ Z} is
an absolutely summable sequence, then we have, by the result of Burton and Dehling []
(see also Lemma .), that for any t > 


n

W t
n(t) →

∞∑

i=–∞
ai,

and hence (.) holds with Wn(p) replaced by n/p. However, for the long-range dependent
case, it is not easy to estimate Wn(t).

In this paper, we extend Theorem . to the long-range dependent linear processes. As a
corollary, we obtain a long-range dependent setting of Theorem .. Further, we propose
a method to estimate Wn(t) for the long-range dependent case.

Throughout this paper, C denotes a positive constant which may vary at each oc-
currence. For events A and B, I(A) denotes the indicator function of the event A, and
I(A, B) = I(A ∩ B).

2 Convergence of long-range dependent linear processes
In this section, we extend Theorem . to the long-range dependent linear processes. To
prove the main results, we need the following lemmas. The first one is the von Bahr-Esseen
inequality (see von Bahr and Esseen []). The second is known as Fuk-Nagaev inequality
(see Corollary . in Nagaev []).

Lemma . Let {ζi, i ≥ } be a sequence of independent random variables with Eζi =  and
E|ζi|t < ∞ for some  ≤ t ≤ . Then, for all n ≥ ,

E

∣∣∣∣∣

n∑

i=

ζi

∣∣∣∣∣

t

≤ Ct

n∑

i=

E|ζi|t ,

where Ct >  is a positive constant depending only on t.



Zhang et al. Journal of Inequalities and Applications  (2017) 2017:241 Page 4 of 14

Lemma . Let {ζi, i ≥ } be a sequence of independent random variables with Eζi = .
Then, for any t ≥  and x > ,

P

(∣∣∣∣∣

n∑

i=

ζi

∣∣∣∣∣ > x

)
≤ ( + /t)tx–t

n∑

i=

E|ζi|t +  exp

{
–

x

(t + )et ∑n
i= Var(ζi)

}
.

The following lemma is well known and can be easily proved by using a standard method.

Lemma . Let p >  and ζ be a random variable. Then the following statements hold.
(i) If  < θ < p, then

∑∞
n= n–θ/pE|ζ |θ I(|ζ | > n/p) ≤ CE|ζ |p.

(ii) If p < q, then
∑∞

n= n–q/pE|ζ |qI(|ζ | ≤ n/p) ≤ CE|ζ |p.
(iii) If r > , then

∑∞
n= nr–E|ζ |pI(|ζ | > n/p) ≤ CE|ζ |rp.

(iv) If rp < q, then
∑∞

n= nr––q/pE|ζ |qI(|ζ | ≤ n/p) ≤ CE|ζ |rp.

The following lemma is useful to estimate Wn(t) when the sequence {ai, i ∈ Z} is abso-
lutely summable. However, it is not applicable to the long-range dependent case.

Lemma . (Burton and Dehling []) Let
∑∞

i=–∞ ai be an absolutely convergent series of
real numbers with a =

∑∞
i=–∞ ai. Then, for any t > ,

lim
n→∞


n

∞∑

i=–∞
|ωni|t = |a|t ,

where ωni =
∑n

k= ai+k .

We now state and prove our main results. The first theorem treats the case r > .

Theorem . Let r >  and  ≤ p < . Let {ai, i ∈ Z} be a sequence of real numbers with

∞∑

i=–∞
|ai|p < ∞.

Suppose that {Xn, n ≥ } is the linear process of a sequence {ζi, i ∈ Z} of i.i.d. random vari-
ables with mean zero and E|ζ|rp < ∞. Furthermore, assume that one of the following con-
ditions holds.

() If  < rp < , then

Wn(q)/Wn(p) = O
(
n/q–/p) for some q ∈ (rp, ).

() If rp ≥ , then

Wn(q)/Wn(p) = O
(
n/q–/p) for some q > rp

and

Wn(s)/Wn(p) = o
(
(log n)–/s) for some s ∈ (p, ].
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Then

∞∑

n=

nr–P

(∣∣∣∣∣

n∑

k=

Xk

∣∣∣∣∣ > Wn(p)ε

)
< ∞ for all ε > .

Proof () For each n ≥ , we have

n∑

k=

Xk =
∞∑

i=–∞

n∑

k=

ai+kζi =
∞∑

i=–∞
ωniζi

=
∞∑

i=–∞
ωni

[
ζiI

(|ζi| > n/p) – EζiI
(|ζi| > n/p)]

+
∞∑

i=–∞
ωni

[
ζiI

(|ζi| ≤ n/p) – EζiI
(|ζi| ≤ n/p)]

:= S′
n + S′′

n

and hence,

∞∑

n=

nr–P

(∣∣∣∣∣

n∑

k=

Xk

∣∣∣∣∣ > Wn(p)ε

)

≤
∞∑

n=

nr–P
(∣∣S′

n
∣∣ > Wn(p)ε/

)
+

∞∑

n=

nr–P
(∣∣S′′

n
∣∣ > Wn(p)ε/

)
. (.)

By the Markov inequality, Lemmas . and ., we have

∞∑

n=

nr–P
(∣∣S′

n
∣∣ > Wn(p)ε/

) ≤
∞∑

n=

nr– pE|S′
n|p

εpW p
n (p)

≤ C
∞∑

n=

nr–
∑∞

i=–∞ |ωni|pE|ζ|pI(|ζ| > n/p)∑∞
i=–∞ |ωni|p

= C
∞∑

n=

nr–E|ζ|pI
(|ζ| > n/p)

≤ CE|ζ|rp < ∞.

Thus the first series on the right-hand side of (.) converges.
Similarly, by the Markov inequality, Lemmas . and ., we have

∞∑

n=

nr–P
(∣∣S′′

n
∣∣ > Wn(p)ε/

) ≤
∞∑

n=

nr– qE|S′′
n|q

εqW q
n (p)

≤ C
∞∑

n=

nr–
∑∞

i=–∞ |ωni|qE|ζ|qI(|ζ| ≤ n/p)
W q

n (p)

= C
∞∑

n=

nr–
(

Wn(q)
Wn(p)

)q

E|ζ|qI
(|ζ| ≤ n/p)
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≤ C
∞∑

n=

nr–(n/q–/p)qE|ζ|qI
(|ζ| ≤ n/p)

= C
∞∑

n=

nr––q/pE|ζ|qI
(|ζ| ≤ n/p)

≤ CE|ζ|rp < ∞.

Hence the second series on the right-hand side of (.) also converges.
() For each n ≥ , we have

n∑

k=

Xk =
∞∑

i=–∞

n∑

k=

ai+kζi =
∞∑

i=–∞
ωniζi

=
∞∑

i=–∞

[
ωniζiI

(|ωniζi| > Wn(p)
)

– EωniζiI
(|ωniζi| > Wn(p)

)]

+
∞∑

i=–∞

[
ωniζiI

(|ωniζi| ≤ Wn(p)
)

– EωniζiI
(|ωniζi| ≤ Wn(p)

)]

:= T ′
n + T ′′

n

and hence,

∞∑

n=

nr–P

(∣∣∣∣∣

n∑

k=

Xk

∣∣∣∣∣ > Wn(p)ε

)

≤
∞∑

n=

nr–P
(∣∣T ′

n
∣∣ > Wn(p)ε/

)
+

∞∑

n=

nr–P
(∣∣T ′′

n
∣∣ > Wn(p)ε/

)
. (.)

By the Markov inequality, Lemmas . and ., we have

∞∑

n=

nr–P
(∣∣T ′

n
∣∣ > Wn(p)ε/

)

≤
∞∑

n=

nr– pE|T ′
n|p

εpW p
n (p)

≤ C
∞∑

n=

nr–
∑∞

i=–∞ E|ωniζi|pI(|ωniζi| > Wn(p))
W p

n (p)

= C
∞∑

n=

nr–
∑∞

i=–∞ E|ωniζi|pI(|ωniζi| > Wn(p), |ζi| > n/p)
W p

n (p)

+ C
∞∑

n=

nr–
∑∞

i=–∞ E|ωniζi|pI(|ωniζi| > Wn(p), |ζi| ≤ n/p)
W p

n (p)

≤ C
∞∑

n=

nr–
∑∞

i=–∞ |ωni|pE|ζi|pI(|ζi| > n/p)
W p

n (p)

+ C
∞∑

n=

nr–
∑∞

i=–∞ E[|ωniζi|p–q|ωniζi|qI(|ωniζi| > Wn(p), |ζi| ≤ n/p)]
W p

n (p)
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≤ C
∞∑

n=

nr–
∑∞

i=–∞ |ωni|pE|ζ|pI(|ζ| > n/p)
W p

n (p)

+ C
∞∑

n=

nr– (Wn(p))p–q ∑∞
i=–∞ |ωni|qE|ζ|qI(|ζ| ≤ n/p)

W p
n (p)

= C
∞∑

n=

nr–E|ζ|pI
(|ζ| > n/p)

+ C
∞∑

n=

nr–
(

Wn(q)
Wn(p)

)q

E|ζ|qI
(|ζ| ≤ n/p)

≤ C
∞∑

n=

nr–E|ζ|pI
(|ζ| > n/p) + C

∞∑

n=

nr––q/pE|ζ|qI
(|ζ| ≤ n/p)

≤ CE|ζ|rp < ∞.

Thus the first series on the right-hand side of (.) converges.
We next prove that the second series on the right-hand side of (.) converges. We have

by Lemma . that for t > ,

∞∑

n=

nr–P
(∣∣T ′′

n
∣∣ > Wn(p)ε/

)

≤ C
∞∑

n=

nr–
∑∞

i=–∞ E|ωniζi|tI(|ωniζi| ≤ Wn(p))
W t

n(p)

+ C
∞∑

n=

nr– exp

{
–

εW 
n (p)

(t + )et ∑∞
i=–∞ Var(ωniζiI(|ωniζi| ≤ Wn(p)))

}
. (.)

Hence it is enough to show that two series on the right-hand side of (.) converge.
If we take t > q, then we have by Lemma . that

∞∑

n=

nr–
∑∞

i=–∞ E|ωniζi|tI(|ωniζi| ≤ Wn(p))
W t

n(p)

=
∞∑

n=

nr–
∑∞

i=–∞ E|ωniζi|tI(|ωniζi| ≤ Wn(p), |ζi| > n/p)
W t

n(p)

+
∞∑

n=

nr–
∑∞

i=–∞ E|ωniζi|tI(|ωniζi| ≤ Wn(p), |ζi| ≤ n/p)
W t

n(p)

=
∞∑

n=

nr–
∑∞

i=–∞ E[|ωniζi|t–p|ωniζi|pI(|ωniζi| ≤ Wn(p), |ζi| > n/p)]
W t

n(p)

+
∞∑

n=

nr–
∑∞

i=–∞ E[|ωniζi|t–q|ωniζi|qI(|ωniζi| ≤ Wn(p), |ζi| ≤ n/p)]
W t

n(p)

≤
∞∑

n=

nr– (Wn(p))t–p ∑∞
i=–∞ |ωni|pE|ζ|pI(|ζ| > n/p)

W t
n(p)
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+
∞∑

n=

nr– (Wn(p))t–q ∑∞
i=–∞ |ωni|qE|ζ|qI(|ζ| ≤ n/p)

W t
n(p)

=
∞∑

n=

nr–E|ζ|pI
(|ζ| > n/p) +

∞∑

n=

nr–
(

Wn(q)
Wn(p)

)q

E|ζ|qI
(|ζ| ≤ n/p)

≤
∞∑

n=

nr–E|ζ|pI
(|ζ| > n/p) +

∞∑

n=

nr––q/pE|ζ|qI
(|ζ| ≤ n/p)

≤ CE|ζ|rp < ∞.

Hence the first series on the right-hand side of (.) converges.
Finally, we show that the second series on the right-hand side of (.) converges. Since

p < s ≤ , we have that

∑∞
i=–∞ Var(ωniζiI(|ωniζi| ≤ Wn(p)))

W 
n (p)

≤
∑∞

i=–∞ E|ωniζi|I(|ωniζi| ≤ Wn(p))
W 

n (p)

=
∑∞

i=–∞ E|ωniζi|s+–sI(|ωniζi| ≤ Wn(p))
W 

n (p)

≤ (Wn(p))–s ∑∞
i=–∞ E|ωniζi|s

W 
n (p)

=
∑∞

i=–∞ |ωni|sE|ζ|s
W s

n(p)

=
(

Wn(s)
Wn(p)

)s

E|ζ|s

= o(/ log n),

which implies that

∞∑

n=

nr–
{

–
εW 

n (p)
(t + )et ∑∞

i=–∞ Var(ωniζiI(|ωniζi| ≤ Wn(p)))

}

≤ C
∞∑

n=

nr–
{

–
ε log n

(t + )eto()

}
< ∞. �

The next theorem treats the case r = .

Theorem . Let  ≤ p < . Let {ai, i ∈ Z} be a sequence of real numbers with

∞∑

i=–∞
|ai|θ < ∞ for some  < θ < p.

Suppose that {Xn, n ≥ } is the linear process of a sequence {ζi, i ∈ Z} of i.i.d. random vari-
ables with mean zero and E|ζ|p < ∞. Furthermore, assume that

Wn(θ )/Wn(p) = O
(
n/θ–/p)
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and

Wn(q)/Wn(p) = O
(
n/q–/p) for some q ∈ (p, ).

Then

∞∑

n=

n–P

(∣∣∣∣∣

n∑

k=

Xk

∣∣∣∣∣ > Wn(p)ε

)
< ∞ for all ε > .

Proof The proof is similar to that of Theorem .(). We proceed with two cases  ≤ θ < p
and  < θ < .

For the case  ≤ θ < p, we have by Lemmas . and . that

∞∑

n=

n–P
(∣∣S′

n
∣∣ > Wn(p)ε/

) ≤
∞∑

n=

n– θ E|S′
n|θ

εθ W θ
n (p)

≤ C
∞∑

n=

n–
∑∞

i=–∞ |ωni|θ E|ζ|θ I(|ζ| > n/p)
W θ

n (p)

= C
∞∑

n=

n–
(

Wn(θ )
Wn(p)

)θ

E|ζ|pI
(|ζ| > n/p)

≤ C
∞∑

n=

n–n(/θ–/p)θ E|ζ|pI
(|ζ| > n/p)

≤ CE|ζ|p < ∞.

As in the proof of Theorem .(), we have that

∞∑

n=

n–P
(∣∣S′′

n
∣∣ > Wn(p)ε/

) ≤ CE|ζ|p < ∞.

For the case  < θ < , we rewrite
∑n

k= Xk as

n∑

k=

Xk =
∞∑

i=–∞
ωniζiI

(|ζi| > n/p) +
∞∑

i=–∞
ωni

[
ζiI

(|ζi| ≤ n/p) – EζiI
(|ζi| ≤ n/p)]

–
∞∑

i=–∞
ωniEζiI

(|ζi| > n/p)

:= S′
n + S′′

n – S′′′
n .

If  < θ < , then
∑∞

n= |an| ≤ (
∑∞

n= |an|θ )/θ < ∞. It follows by Lemma . that

W –
n (p)

∣∣S′′′
n
∣∣ ≤ W –

n (p)
∞∑

i=–∞
|ωni|E|ζ|I

(|ζ| > n/p)

≤ Cn–/pE|ζ|I
(|ζ| > n/p)

≤ CE|ζ|pI
(|ζ| > n/p) → 
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as n → ∞. Hence

∞∑

n=

n–P

(∣∣∣∣∣

n∑

k=

Xk

∣∣∣∣∣ > Wn(p)ε

)

≤ C
∞∑

n=

n–P
(∣∣S′

n
∣∣ > Wn(p)ε/

)
+ C

∞∑

n=

n–P
(∣∣S′′

n
∣∣ > Wn(p)ε/

)
.

The rest of the proof is the same as that of the previous case and is omitted. �

The following corollary extends Theorem . to the short-range dependent linear pro-
cesses.

Corollary . Let r ≥ ,  ≤ p < , and rp > . Let {ai, i ∈ Z} be an absolutely summable
sequence of real numbers. Suppose that {Xn, n ≥ } is the linear process of a sequence {ζi, i ∈
Z} of i.i.d. random variables with mean zero and E|ζ|rp < ∞. Then

∞∑

n=

nr–P

(∣∣∣∣∣

n∑

k=

Xk

∣∣∣∣∣ > n/pε

)
< ∞ for all ε > .

Proof We first note that

∞∑

i=–∞
|ai|p ≤

( ∞∑

i=–∞
|ai|

)p

< ∞.

If  < p < , then we take θ such that  ≤ θ < p. Then

∞∑

i=–∞
|ai|θ ≤

( ∞∑

i=–∞
|ai|

)θ

< ∞.

By Lemma ., for any t > , there exist positive constants C and C independent of n
such that

Cn/t ≤ Wn(t) ≤ Cn/t for all n ≥ .

Then all conditions on Wn(·) in Theorems . and . are easily satisfied. Hence the proof
follows from Theorems . and .. �

Remark . In Corollary ., the case rp =  (i.e., r =  and p = ) is not considered. In fact,
Corollary . does not hold for this case (see Sung []).

3 An estimation of Wn(t) for the long-range dependent case
As we have seen in Sections  and , it is easy to estimate Wn(t) for the short-range de-
pendent case. In this section, we propose a method to estimate Wn(t) for the long-range
dependent case. It is not easy to estimate Wn(t) when the sequence {ai, i ∈ Z} is not ab-
solutely summable. For simplicity, we will consider non-increasing sequences of positive
numbers. For the finiteness of Wn(t), without loss of generality, it is necessary to assume
that ai =  if i ≤  and

∑∞
i= at

i < ∞.
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Lemma . Let t > . Let {ai, i ∈ Z} be a non-increasing sequence of positive real numbers
satisfying ai =  if i ≤  and

∑∞
i= at

i < ∞. Then

n


(a + · · · + a[n/])t + nt
∞∑

i=n

at
i ≤ W t

n(t) ≤ n(a + · · · + an)t + nt
∞∑

i=n

at
i .

Proof Since ai =  if i ≤  and  < ai ↓, we get that

W t
n(t) =

n∑

i=

( i∑

j=

aj

)t

+
n∑

i=

( n∑

j=

ai+j

)t

+
∞∑

i=n+

( n∑

j=

ai+j

)t

≤ n(a + · · · + an)t + nt
∞∑

i=n+

at
i+

≤ n(a + · · · + an)t + nt
∞∑

i=n

at
i .

Similarly,

W t
n(t) =

n–∑

i=

( i∑

j=

aj

)t

+
∞∑

i=

( n–∑

j=

ai+j

)t

≥
n–∑

i=[n/]

( i∑

j=

aj

)t

+ nt
∞∑

i=n

at
i

≥ n


(a + · · · + a[n/])t + nt
∞∑

i=n

at
i .

Thus the proof is completed. �

The following lemma can be found in Martikainen [].

Lemma . (Martikainen []) Let {bn, n ≥ } be a non-decreasing sequence of positive real
numbers. Then

∞∑

i=n


ibi

= O
(
b–

n
) ⇐⇒ lim inf

n→∞
brn

bn
>  for some integer r ≥ .

Similarly, we can obtain a counterpart of Lemma ..

Lemma . Let {bn, n ≥ } be a non-decreasing sequence of positive real numbers. Then

n∑

i=

bi

i
= O(bn) ⇐⇒ lim inf

n→∞
brn

bn
>  for some integer r ≥ .

Proof The proof is similar to that of Lemma . and is omitted. �

Using Lemmas . and ., we have the following lemma.
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Lemma . Let t >  and let {an, n ≥ } be a sequence of positive real numbers satisfying
nan ↑, nat

n ↓, and


r

< lim inf
n→∞

arn

an
≤ lim sup

n→∞
arn

an
<

(

r

)/t

for some integer r ≥ .

Then the following statements hold:
(i)

∑∞
i=n at

i = O(nat
n).

(ii)
∑n

i= ai = O(nan).

Proof The proof of (i) follows from Lemma .. The proof of (ii) follows from Lem-
ma .. �

Now we present a method to estimate Wn(t) for the long-range dependent case.

Theorem . Let t > , and let {an, n ≥ } be a sequence of positive real numbers satisfy-
ing the same conditions as in Lemma .. Then there exist positive constants C and C

independent of n such that

Cn+tat
n ≤ W t

n(t) ≤ Cn+tat
n for all n ≥ ,

where ai =  if i ≤ .

Proof By the condition nat
n ↓, we have (an+/an)t ≤ n/(n + ), which implies  < an ↓. The

upper bound of W t
n(t) follows by Lemmas . and .. For the lower bound, we have by

lim infn→∞ arn/an > /r that

arn/an ≥ /r for all large n.

It follows that for all large n

nt
∞∑

i=n

at
i ≥ nt

rn∑

i=n

at
i ≥ (r – )n+tat

rn ≥ (r – )r–tn+tat
n.

Since  < an ↓,

n(a + · · · + a[n/])t ≥ n[n/]tat
[n/] ≥ n[n/]tat

n.

Hence the lower bound follows from Lemma .. �

Finally, we give two long-range dependent linear processes.

Example . Let ai = /i if i ≥  and ai =  if i ≤ . Then the series
∑∞

i=–∞ ai diverges, but
∑∞

i=–∞ at
i converges if t > . Observe that

ln(n + ) ≤
n∑

i=

ai ≤  + ln n.
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If t > , then


t – 

n–t+ ≤
∞∑

i=n

at
i ≤ n–t +


t – 

n–t+.

By Lemma ., for any t > , there exist positive constants C and C independent of n such
that

Cn(ln n)t ≤ W t
n(t) ≤ Cn(ln n)t for all n ≥ .

Let Xn =
∑∞

i=–∞ ai+nζi be the long-range dependent linear process of a sequence {ζi} of
i.i.d. random variables with mean zero and E|ζ|rp < ∞, where r >  and  < p < . Then all
conditions of Theorem . are easily satisfied. By Theorem .,

∞∑

n=

nr–P

(∣∣∣∣∣

n∑

k=

Xk

∣∣∣∣∣ > n/p ln nε

)
< ∞ for all ε > .

Example . Let  < p < . Let ai = /id if i ≥  and ai =  if i ≤ , where /p < d < . Then
the series

∑∞
i=–∞ ai diverges, but

∑∞
i=–∞ at

i converges if t > /d. Since an/an = –d , we have
by Theorem . that

Cn+t–dt ≤ W t
n(t) ≤ Cn+t–dt for all n ≥ .

Let Xn =
∑∞

i=–∞ ai+nζi be the long-range dependent linear process of a sequence {ζi} of
i.i.d. random variables with mean zero and E|ζ|p < ∞. Take θ such that /d < θ < p. Then
all conditions of Theorem . are easily satisfied. By Theorem .,

∞∑

n=

n–P

(∣∣∣∣∣

n∑

k=

Xk

∣∣∣∣∣ > n/p+–dε

)
< ∞ for all ε > .
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