10 research outputs found

    A Personalized Self-Management Rehabilitation System for Stroke Survivors: A Quantitative Gait Analysis Using a Smart Insole.

    Get PDF
    Background: In the United Kingdom, stroke is the single largest cause of adult disability and results in a cost to the economy of £8.9 billion per annum. Service needs are currently not being met; therefore, initiatives that focus on patient-centered care that promote long-term self-management for chronic conditions should be at the forefront of service redesign. The use of innovative technologies and the ability to apply these effectively to promote behavior change are paramount in meeting the current challenges. Objective: Our objective was to gain a deeper insight into the impact of innovative technologies in support of home-based, self-managed rehabilitation for stroke survivors. An intervention of daily walks can assist with improving lower limb motor function, and this can be measured by using technology. This paper focuses on assessing the usage of self-management technologies on poststroke survivors while undergoing rehabilitation at home. Methods: A realist evaluation of a personalized self-management rehabilitation system was undertaken in the homes of stroke survivors (N=5) over a period of approximately two months. Context, mechanisms, and outcomes were developed and explored using theories relating to motor recovery. Participants were encouraged to self-manage their daily walking activity; this was achieved through goal setting and motivational feedback. Gait data were collected and analyzed to produce metrics such as speed, heel strikes, and symmetry. This was achieved using a “smart insole” to facilitate measurement of walking activities in a free-living, nonrestrictive environment. Results: Initial findings indicated that 4 out of 5 participants performed better during the second half of the evaluation. Performance increase was evident through improved heel strikes on participants’ affected limb. Additionally, increase in performance in relation to speed was also evident for all 5 participants. A common strategy emerged across all but one participant as symmetry performance was sacrificed in favor of improved heel strikes. This paper evaluates compliance and intensity of use. Conclusion: Our findings suggested that 4 out of the 5 participants improved their ability to heel strike on their affected limb. All participants showed improvements in their speed of gait measured in steps per minute with an average increase of 9.8% during the rehabilitation program. Performance in relation to symmetry showed an 8.5% average decline across participants, although 1 participant improved by 4%. Context, mechanism, and outcomes indicated that dual motor learning and compensatory strategies were deployed by the participants

    Actinide covalency measured by pulsed electron paramagnetic resonance spectroscopy

    Get PDF
    Our knowledge of actinide chemical bonds lags far behind our understanding of the bonding regimes of any other series of elements. This is a major issue given the technological as well as fundamental importance of f-block elements. Some key chemical differences between actinides and lanthanides—and between different actinides—can be ascribed to minor differences in covalency, that is, the degree to which electrons are shared between the f-block element and coordinated ligands. Yet there are almost no direct measures of such covalency for actinides. Here we report the first pulsed electron paramagnetic resonance spectra of actinide compounds. We apply the hyperfine sublevel correlation technique to quantify the electron-spin density at ligand nuclei (via the weak hyperfine interactions) in molecular thorium(III) and uranium(III) species and therefore the extent of covalency. Such information will be important in developing our understanding of the chemical bonding, and therefore the reactivity, of actinides

    Platelet rich plasma injection grafts for musculoskeletal injuries: a review

    Get PDF
    In Europe and the United States, there is an increasing prevalence of the use of autologous blood products to facilitate healing in a variety of applications. Recently, we have learned more about specific growth factors, which play a crucial role in the healing process. With that knowledge there is abundant enthusiasm in the application of concentrated platelets, which release a supra-maximal quantity of these growth factors to stimulate recovery in non-healing injuries. For 20 years, the application of autologous PRP has been safely used and documented in many fields including; orthopedics, sports medicine, dentistry, ENT, neurosurgery, ophthalmology, urology, wound healing, cosmetic, cardiothoracic, and maxillofacial surgery. This article introduces the reader to PRP therapy and reviews the current literature on this emerging treatment modality. In summary, PRP provides a promising alternative to surgery by promoting safe and natural healing. However, there are few controlled trials, and mostly anecdotal or case reports. Additionally the sample sizes are frequently small, limiting the generalization of the findings. Recently, there is emerging literature on the beneficial effects of PRP for chronic non-healing tendon injuries including lateral epicondylitis and plantar fasciitis and cartilage degeneration (Mishra and Pavelko, The American Journal of Sports Medicine 10(10):1–5, 2006; Barrett and Erredge, Podiatry Today 17:37–42, 2004). However, as clinical use increases, more controlled studies are needed to further understand this treatment

    Organometallic neptunium(III) complexes

    Get PDF
    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal–ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on UIII and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to NpIV. Here we report the synthesis of three new NpIII organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that NpIII complexes could act as single-molecule magnets, and that the lower oxidation state of NpII is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key NpIII orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements

    Healthy Subject Testing with the Robotic Gait Rehabilitation (RGR) Trainer

    No full text
    corecore