18 research outputs found

    Nicotinic Acetylcholine Receptor Variants Are Related to Smoking Habits, but Not Directly to COPD

    Get PDF
    Genome-wide association studies identified single nucleotide polymorphisms (SNPs) in the nicotinic acetylcholine receptors (nAChRs) cluster as a risk factor for nicotine dependency and COPD. We investigated whether SNPs in the nAChR cluster are associated with smoking habits and lung function decline, and if these potential associations are independent of each other. The SNPs rs569207, rs1051730 and rs8034191 in the nAChR cluster were analyzed in the Vlagtwedde-Vlaardingen cohort (n = 1,390) that was followed for 25 years. We used GEE and LME models to analyze the associations of the SNPs with quitting or restarting smoking and with the annual FEV1 decline respectively. Individuals homozygote (CC) for rs569207 were more likely to quit smoking (OR (95%CI) = 1.58 (1.05–2.38)) compared to wild-type (TT) individuals. Individuals homozygote (TT) for rs1051730 were less likely to quit smoking (0.64 (0.42; 0.97)) compared to wild-type (CC) individuals. None of the SNPs was significantly associated with the annual FEV1 decline in smokers and ex-smokers. We show that SNPs in the nAChR region are associated with smoking habits such as quitting smoking, but have no significant effect on the annual FEV1 decline in smokers and ex-smokers, suggesting a potential role of these SNPs in COPD development via smoking habits rather than via direct effects on lung function

    Targeted sequencing of lung function loci in chronic obstructive pulmonary disease cases and controls

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide; smoking is the main risk factor for COPD, but genetic factors are also relevant contributors. Genome-wide association studies (GWAS) of the lung function measures used in the diagnosis of COPD have identified a number of loci, however association signals are often broad and collectively these loci only explain a small proportion of the heritability. In order to examine the association with COPD risk of genetic variants down to low allele frequencies, to aid fine-mapping of association signals and to explain more of the missing heritability, we undertook a targeted sequencing study in 300 COPD cases and 300 smoking controls for 26 loci previously reported to be associated with lung function. We used a pooled sequencing approach, with 12 pools of 25 individuals each, enabling high depth (30x) coverage per sample to be achieved. This pooled design maximised sample size and therefore power, but led to challenges during variant-calling since sequencing error rates and minor allele frequencies for rare variants can be very similar. For this reason we employed a rigorous quality control pipeline for variant detection which included the use of 3 independent calling algorithms. In order to avoid false positive associations we also developed tests to detect variants with potential batch effects and removed them before undertaking association testing. We tested for the effects of single variants and the combined effect of rare variants within a locus. We followed up the top signals with data available (only 67% of collapsing methods signals) in 4,249 COPD cases and 11,916 smoking controls from UK Biobank. We provide suggestive evidence for the combined effect of rare variants on COPD risk in TNXB and in sliding windows within MECOM and upstream of HHIP. These findings can lead to an improved understanding of the molecular pathways involved in the development of COPD

    Acute effects of intracranial hypertension and ARDS on pulmonary and neuronal damage: a randomized experimental study in pigs

    Get PDF
    Abstract PURPOSE: To determine reciprocal and synergistic effects of acute intracranial hypertension and ARDS on neuronal and pulmonary damage and to define possible mechanisms. METHODS: Twenty-eight mechanically ventilated pigs were randomized to four groups of seven each: control; acute intracranial hypertension (AICH); acute respiratory distress syndrome (ARDS); acute respiratory distress syndrome in combination with acute intracranial hypertension (ARDS + AICH). AICH was induced with an intracranial balloon catheter and the inflation volume was adjusted to keep intracranial pressure (ICP) at 30-40 cmH2O. ARDS was induced by oleic acid infusion. Respiratory function, hemodynamics, extravascular lung water index (ELWI), lung and brain computed tomography (CT) scans, as well as inflammatory mediators, S100B, and neuronal serum enolase (NSE) were measured over a 4-h period. Lung and brain tissue were collected and examined at the end of the experiment. RESULTS: In both healthy and injured lungs, AICH caused increases in NSE and TNF-alpha plasma concentrations, extravascular lung water, and lung density in CT, the extent of poorly aerated (dystelectatic) and atelectatic lung regions, and an increase in the brain tissue water content. ARDS and AICH in combination induced damage in the hippocampus and decreased density in brain CT. CONCLUSIONS: AICH induces lung injury and also exacerbates pre-existing damage. Increased extravascular lung water is an early marker. ARDS has a detrimental effect on the brain and acts synergistically with intracranial hypertension to cause histological hippocampal damage

    Adapting to a warmer ocean – seasonal shift of baleen whale movements over three decades

    Get PDF
    Date of Acceptance: 11/02/2015Global warming poses particular challenges to migratory species, which face changes to the multiple environments occupied during migration. For many species, the timing of migration between summer and winter grounds and also within-season movements are crucial to maximise exploitation of temporarily abundant prey resources in feeding areas, themselves adapting to the warming planet. We investigated the temporal variation in the occurrence of fin (Balaenoptera physalus) and humpback whales (Megaptera novaeangliae) in a North Atlantic summer feeding ground, the Gulf of St. Lawrence (Canada), from 1984 to 2010 using a long-term study of individually identifiable animals. These two sympatric species both shifted their date of arrival at a previously undocumented rate of more than 1day per year earlier over the study period thus maintaining the approximate 2-week difference in arrival of the two species and enabling the maintenance of temporal niche separation. However, the departure date of both species also shifted earlier but at different rates resulting in increasing temporal overlap over the study period indicating that this separation may be starting to erode. Our analysis revealed that the trend in arrival was strongly related to earlier ice break-up and rising sea surface temperature, likely triggering earlier primary production. The observed changes in phenology in response to ocean warming are a remarkable example of phenotypic plasticity and may partly explain how baleen whales were able to survive a number of changes in climate over the last several million years. However, it is questionable whether the observed rate of change in timing can be maintained. Substantial modification to the distribution or annual life cycle of these species might be required to keep up with the ongoing warming of the oceans.Publisher PDFPeer reviewe
    corecore