414 research outputs found

    Light-intensity physical activity and cardiometabolic biomarkers in US adolescents

    Get PDF
    BackgroundThe minimal physical activity intensity that would confer health benefits among adolescents is unknown. The purpose of this study was to examine the associations of accelerometer-derived light-intensity (split into low and high) physical activity, and moderate- to vigorous-intensity physical activity with cardiometabolic biomarkers in a large population-based sample.MethodsThe study is based on 1,731 adolescents, aged 12&ndash;19 years from the 2003/04 and 2005/06 National Health and Nutrition Examination Survey. Low light-intensity activity (100&ndash;799 counts/min), high light-intensity activity (800 counts/min to &lt;4 METs) and moderate- to vigorous-intensity activity (&ge;4 METs, Freedson age-specific equation) were accelerometer-derived. Cardiometabolic biomarkers, including waist circumference, systolic blood pressure, diastolic blood pressure, HDL-cholesterol, and C-reactive protein were measured. Triglycerides, LDL- cholesterol, insulin, glucose, and homeostatic model assessments of &beta;-cell function (HOMA-%B) and insulin sensitivity (HOMA-%S) were also measured in a fasting sub-sample (n=807).ResultsAdjusted for confounders, each additional hour/day of low light-intensity activity was associated with 0.59 (95% CI: 1.18&ndash;0.01) mmHG lower diastolic blood pressure. Each additional hour/day of high light-intensity activity was associated with 1.67 (2.94&ndash;0.39) mmHG lower diastolic blood pressure and 0.04 (0.001&ndash;0.07) mmol/L higher HDL-cholesterol. Each additional hour/day of moderate- to vigorous-intensity activity was associated with 3.54 (5.73&ndash;1.35) mmHG lower systolic blood pressure, 5.49 (1.11&ndash;9.77)% lower waist circumference, 25.87 (6.08&ndash;49.34)% lower insulin, and 16.18 (4.92&ndash;28.53)% higher HOMA-%S.ConclusionsTime spent in low light-intensity physical activity and high light-intensity physical activity had some favorable associations with biomarkers. Consistent with current physical activity recommendations for adolescents, moderate- to vigorous-intensity activity had favorable associations with many cardiometabolic biomarkers. While increasing MVPA should still be a public health priority, further studies are needed to identify dose-response relationships for light-intensity activity thresholds to inform future recommendations and interventions for adolescents.</div

    Effects of reallocating time in different activity intensities on health and fitness: a cross sectional study

    Get PDF
    BACKGROUND: The effects of replacing time in specific activity categories for other categories (e.g. replacing sedentary time with light activity) on health and fitness are not well known. This study used isotemporal substitution to investigate the effects of substituting activity categories in an equal time exchange fashion on health and fitness in young people. METHODS: Participants were drawn from schools in Camden, London (n = 353, mean age 9.3 ± 2.3 years). Time sedentary, in light and in moderate-to-vigorous activity (MVPA) was measured via accelerometry. The effects of substituting time in activity categories (sedentary, light and MVPA) with equivalent time in another category on health and fitness were examined using isotemporal substitution. RESULTS: In single and partition models, MVPA was favourably associated with body fat %, horizontal jump distance and flexibility. Time sedentary and in light activity were not associated with health and fitness outcomes in these models. In substitution models, replacing one hour of sedentary time with MVPA was favourably associated with body fat % (B = -4.187; 95% confidence interval (CI), -7.233, -1.142), horizontal jump distance (B = 16.093; 95% CI, 7.476, 24.710) and flexibility (B = 4.783; 95% CI, 1.910, 7.656). Replacing time in light activity with MVPA induced similar benefits but there were null effects for replacing sedentary with light intensity. CONCLUSION: Substituting time sedentary and in light activity with MVPA was associated with favourable health and fitness. Time in sedentary behaviour may only be detrimental to health and fitness when it replaces time in MVPA in young people

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    Diazoxide attenuates autoimmune encephalomyelitis and modulates lymphocyte proliferation and dendritic cell functionality

    Get PDF
    Activation of mitochondrial ATP-sensitive potassium (KATP) channels is postulated as an effective mechanism to confer cardio and neuroprotection, especially in situations associated to oxidative stress. Pharmacological activation of these channels inhibits glia-mediated neuroinflammation. In this way, diazoxide, an old-known mitochondrial KATP channel opener, has been proposed as an effective and safe treatment for different neurodegenerative diseases, demonstrating efficacy in different animal models, including the experimental autoimmune encephalomyelitis (EAE), an animal model for Multiple Sclerosis. Although neuroprotection and modulation of glial reactivity could alone explain the positive effects of diazoxide administration in EAE mice, little is known of its effects on the immune system and the autoimmune reaction that triggers the EAE pathology. The aim of the present work was to study the effects of diazoxide in autoimmune key processes related with EAE, such as antigen presentation and lymphocyte activation and proliferation. Results show that, although diazoxide treatment inhibited in vitro and ex-vivo lymphocyte proliferation from whole splenocytes it had no effect in isolated CD4(+) T cells. In any case, treatment had no impact in lymphocyte activation. Diazoxide can also slightly decrease CD83, CD80, CD86 and major histocompatibility complex class II expression in cultured dendritic cells, demonstrating a possible role in modulating antigen presentation. Taken together, our results indicate that diazoxide treatment attenuates autoimmune encephalomyelitis pathology without immunosuppressive effect
    corecore