149 research outputs found
Rational Design of Temperature-Sensitive Alleles Using Computational Structure Prediction
Temperature-sensitive (ts) mutations are mutations that exhibit a mutant phenotype at high or low temperatures and a wild-type phenotype at normal temperature. Temperature-sensitive mutants are valuable tools for geneticists, particularly in the study of essential genes. However, finding ts mutations typically relies on generating and screening many thousands of mutations, which is an expensive and labor-intensive process. Here we describe an in silico method that uses Rosetta and machine learning techniques to predict a highly accurate “top 5” list of ts mutations given the structure of a protein of interest. Rosetta is a protein structure prediction and design code, used here to model and score how proteins accommodate point mutations with side-chain and backbone movements. We show that integrating Rosetta relax-derived features with sequence-based features results in accurate temperature-sensitive mutation predictions
Incidence trend and risk factors for campylobacter infections in humans in Norway
BACKGROUND: The objectives of the study were to evaluate whether the increase in incidence of campylobacteriosis observed in humans in Norway from 1995 to 2001 was statistically significant and whether different biologically plausible risk factors were associated with the incidence of campylobacteriosis in the different counties in Norway. METHODS: To model the incidence of domestically acquired campylobacteriosis from 1995 to 2001, a population average random effect poisson model was applied (the trend model). To case data and assumed risk-factor/protective data such as sale of chicken, receiving treated drinking water, density of dogs and grazing animals, occupation of people in the municipalities and climatic factors from 2000 and 2001, an equivalent model accounting for geographical clustering was applied (the ecological model). RESULTS: The increase in incidence of campylobacteriosis in humans in Norway from 1995 to 2001 was statistically significant from 1998. Treated water was a protective factor against Campylobacter infections in humans with an IRR of 0.78 per percentage increase in people supplied. The two-level modelling technique showed no evidence of clustering of campylobacteriosis in any particular county. Aggregation of data on municipality level makes interpretation of the results at the individual level difficult. CONCLUSION: The increase in incidence of Campylobacter infections in humans from 1995 to 2001 was statistically significant from 1998. Treated water was a protective factor against Campylobacter infections in humans with an IRR of 0.78 per percentage increase in people supplied. Campylobacter infections did not appear to be clustered in any particular county in Norway
The PhyloPythiaS Web Server for Taxonomic Assignment of Metagenome Sequences
Metagenome sequencing is becoming common and there is an increasing need for easily accessible tools for data analysis. An essential step is the taxonomic classification of sequence fragments. We describe a web server for the taxonomic assignment of metagenome sequences with PhyloPythiaS. PhyloPythiaS is a fast and accurate sequence composition-based classifier that utilizes the hierarchical relationships between clades. Taxonomic assignments with the web server can be made with a generic model, or with sample-specific models that users can specify and create. Several interactive visualization modes and multiple download formats allow quick and convenient analysis and downstream processing of taxonomic assignments. Here, we demonstrate usage of our web server by taxonomic assignment of metagenome samples from an acidophilic biofilm community of an acid mine and of a microbial community from cow rumen
Functionalized Positive Nanoparticles Reduce Mucin Swelling and Dispersion
Multi-functionalized nanoparticles (NPs) have been extensively investigated for their potential in household and commercial products, and biomedical applications. Previous reports have confirmed the cellular nanotoxicity and adverse inflammatory effects on pulmonary systems induced by NPs. However, possible health hazards resulting from mucus rheological disturbances induced by NPs are underexplored. Accumulation of viscous, poorly dispersed, and less transportable mucus leading to improper mucus rheology and dysfunctional mucociliary clearance are typically found to associate with many respiratory diseases such as asthma, cystic fibrosis (CF), and COPD (Chronic Obstructive Pulmonary Disease). Whether functionalized NPs can alter mucus rheology and its operational mechanisms have not been resolved. Herein, we report that positively charged functionalized NPs can hinder mucin gel hydration and effectively induce mucin aggregation. The positively charged NPs can significantly reduce the rate of mucin matrix swelling by a maximum of 7.5 folds. These NPs significantly increase the size of aggregated mucin by approximately 30 times within 24 hrs. EGTA chelation of indigenous mucin crosslinkers (Ca2+ ions) was unable to effectively disperse NP-induced aggregated mucins. Our results have demonstrated that positively charged functionalized NPs can impede mucin gel swelling by crosslinking the matrix. This report also highlights the unexpected health risk of NP-induced change in mucus rheological properties resulting in possible mucociliary transport impairment on epithelial mucosa and related health problems. In addition, our data can serve as a prospective guideline for designing nanocarriers for airway drug delivery applications
Functionalized carboxyl nanoparticles enhance mucus dispersion and hydration
Luminal accumulation of viscous, poorly hydrated, and less transportable mucus has been associated with altered mucus rheology and reduced mucociliary clearance. These symptoms are some of the cardinal clinical manifestations found throughout major respiratory diseases as well as gastrointestinal and digestive disorders. Applications of current mucolytics may yield short-term improvements but are continuously challenged by undesirable side-effects. While nanoparticles (NPs) can interact with mucin polymers, whether functionalized NPs can rectify mucus rheology is unknown. Herein, we report that carboxyl-functionalized NPs (24 nm and 120 nm) dramatically reduced mucin gel size and accelerated mucin matrix hydration rate (diffusivity). Our results suggest that carboxyl-functionalized NPs disperse mucin gels possibly by enhancing network hydration. This report highlights the prospective usages of carboxyl-functionalized NPs as a novel mucus dispersant or mucolytic agent in adjusting mucus rheological properties and improving mucociliary transport to relieve clinical symptoms of patients suffering from relevant diseases
RAIphy: Phylogenetic classification of metagenomics samples using iterative refinement of relative abundance index profiles
Background: Computational analysis of metagenomes requires the taxonomical assignment of the genome contigs assembled from DNA reads of environmental samples. Because of the diverse nature of microbiomes, the length of the assemblies obtained can vary between a few hundred bp to a few hundred Kbp. Current taxonomic classification algorithms provide accurate classification for long contigs or for short fragments from organisms that have close relatives with annotated genomes. These are significant limitations for metagenome analysis because of the complexity of microbiomes and the paucity of existing annotated genomes.
Results: We propose a robust taxonomic classification method, RAIphy, that uses a novel sequence similarity metric with iterative refinement of taxonomic models and functions effectively without these limitations. We have tested RAIphy with synthetic metagenomics data ranging between 100 bp to 50 Kbp. Within a sequence read range of 100 bp-1000 bp, the sensitivity of RAIphy ranges between 38%-81% outperforming the currently popular composition-based methods for reads in this range. Comparison with computationally more intensive sequence similarity methods shows that RAIphy performs competitively while being significantly faster. The sensitivityspecificity characteristics for relatively longer contigs were compared with the PhyloPythia and TACOA algorithms. RAIphy performs better than these algorithms at varying clade-levels. For an acid mine drainage (AMD) metagenome, RAIphy was able to taxonomically bin the sequence read set more accurately than the currently available methods, Phymm and MEGAN, and more accurately in two out of three tests than the much more computationally intensive method, PhymmBL.
Conclusions: With the introduction of the relative abundance index metric and an iterative classification method, we propose a taxonomic classification algorithm that performs competitively for a large range of DNA contig lengths assembled from metagenome data. Because of its speed, simplicity, and accuracy RAIphy can be successfully used in the binning process for a broad range of metagenomic data obtained from environmental samples
Geographic determinants of reported human Campylobacter infections in Scotland
<p><b>Background:</b> Campylobacteriosis is the leading cause of bacterial gastroenteritis in most developed countries. People are exposed to infection from contaminated food and environmental sources. However, the translation of these exposures into infection in the human population remains incompletely understood. This relationship is further complicated by differences in the presentation of cases, their investigation, identification, and reporting; thus, the actual differences in risk must be considered alongside the artefactual differences.</p>
<p><b>Methods:</b> Data on 33,967 confirmed Campylobacter infections in mainland Scotland between 2000 and 2006 (inclusive) that were spatially referenced to the postcode sector level were analysed. Risk factors including the Carstairs index of social deprivation, the easting and northing of the centroid of the postcode sector, measures of livestock density by species and population density were tested in univariate screening using a non-spatial generalised linear model. The NHS Health Board of the case was included as a random effect in this final model. Subsequently, a spatial generalised linear mixed model (GLMM) was constructed and age-stratified sensitivity analysis was conducted on this model.</p>
<p><b>Results:</b> The spatial GLMM included the protective effects of the Carstairs index (relative risk (RR) = 0.965, 95% Confidence intervals (CIs) = 0.959, 0.971) and population density (RR = 0.945, 95% CIs = 0.916, 0.974. Following stratification by age group, population density had a significant protective effect (RR = 0.745, 95% CIs = 0.700, 0.792) for those under 15 but not for those aged 15 and older (RR = 0.982, 95% CIs = 0.951, 1.014). Once these predictors have been taken into account three NHS Health Boards remain at significantly greater risk (Grampian, Highland and Tayside) and two at significantly lower risk (Argyll and Ayrshire and Arran).</p>
<p><b>Conclusions:</b> The less deprived and children living in rural areas are at the greatest risk of being reported as a case of Campylobacter infection. However, this analysis cannot differentiate between actual risk and heterogeneities in individual reporting behaviour; nevertheless this paper has demonstrated that it is possible to explain the pattern of reported Campylobacter infections using both social and environmental predictors.</p>
Recommended from our members
State pension funds and corporate social responsibility: do beneficiaries’ political values influence funds’ investment decisions?
This study explores the underlying drivers of US public pension funds’ tendency to tilt their portfolios towards companies with stronger corporate social responsibility (CSR). Studying the equity holdings of large, internally-managed US state pension funds, we find evidence that the political leaning of their beneficiaries and political pressures by state politicians affect funds’ investment decisions. State pension funds from states with Democratic-leaning beneficiaries tilt their portfolios more strongly towards companies that perform well on CSR issues, and this tendency is intensified when the state government is dominated by Democratic state politicians. Moreover, we find that funds which tilt their portfolios towards companies with superior CSR scores generate a slightly higher return compared with their counterparts. Overall, our findings indicate that funds align their investment choices with the financial and non-financial interests of their beneficiaries when deciding whether to incorporate CSR into their equity allocations
TACOA – Taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach
Diaz NN, Krause L, Goesmann A, Niehaus K, Nattkemper TW. TACOA - Taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach. BMC Bioinformatics. 2009;10(1):56.Background:
Metagenomics, or the sequencing and analysis of collective genomes (metagenomes) of microorganisms isolated from an environment, promises direct access to the "unculturable majority". This emerging field offers the potential to lay solid basis on our understanding of the entire living world. However, the taxonomic classification is an essential task in the analysis of metagenomics data sets that it is still far from being solved. We present a novel strategy to predict the taxonomic origin of environmental genomic fragments. The proposed classifier combines the idea of the k-nearest neighbor with strategies from kernel-based learning.
Results
Our novel strategy was extensively evaluated using the leave-one-out cross validation strategy on fragments of variable length (800 bp – 50 Kbp) from 373 completely sequenced genomes. TACOA is able to classify genomic fragments of length 800 bp and 1 Kbp with high accuracy until rank class. For longer fragments ≥ 3 Kbp accurate predictions are made at even deeper taxonomic ranks (order and genus). Remarkably, TACOA also produces reliable results when the taxonomic origin of a fragment is not represented in the reference set, thus classifying such fragments to its known broader taxonomic class or simply as "unknown". We compared the classification accuracy of TACOA with the latest intrinsic classifier PhyloPythia using 63 recently published complete genomes. For fragments of length 800 bp and 1 Kbp the overall accuracy of TACOA is higher than that obtained by PhyloPythia at all taxonomic ranks. For all fragment lengths, both methods achieved comparable high specificity results up to rank class and low false negative rates are also obtained.
Conclusion:
An accurate multi-class taxonomic classifier was developed for environmental genomic fragments. TACOA can predict with high reliability the taxonomic origin of genomic fragments as short as 800 bp. The proposed method is transparent, fast, accurate and the reference set can be easily updated as newly sequenced genomes become available. Moreover, the method demonstrated to be competitive when compared to the most current classifier PhyloPythia and has the advantage that it can be locally installed and the reference set can be kept up-to-date.
Background
Accurate Genome Relative Abundance Estimation Based on Shotgun Metagenomic Reads
Accurate estimation of microbial community composition based on metagenomic sequencing data is fundamental for subsequent metagenomics analysis. Prevalent estimation methods are mainly based on directly summarizing alignment results or its variants; often result in biased and/or unstable estimates. We have developed a unified probabilistic framework (named GRAMMy) by explicitly modeling read assignment ambiguities, genome size biases and read distributions along the genomes. Maximum likelihood method is employed to compute Genome Relative Abundance of microbial communities using the Mixture Model theory (GRAMMy). GRAMMy has been demonstrated to give estimates that are accurate and robust across both simulated and real read benchmark datasets. We applied GRAMMy to a collection of 34 metagenomic read sets from four metagenomics projects and identified 99 frequent species (minimally 0.5% abundant in at least 50% of the data- sets) in the human gut samples. Our results show substantial improvements over previous studies, such as adjusting the over-estimated abundance for Bacteroides species for human gut samples, by providing a new reference-based strategy for metagenomic sample comparisons. GRAMMy can be used flexibly with many read assignment tools (mapping, alignment or composition-based) even with low-sensitivity mapping results from huge short-read datasets. It will be increasingly useful as an accurate and robust tool for abundance estimation with the growing size of read sets and the expanding database of reference genomes
- …