17 research outputs found

    Making oneself predictable: reduced temporal variability facilitates joint action coordination

    Get PDF
    Performing joint actions often requires precise temporal coordination of individual actions. The present study investigated how people coordinate their actions at discrete points in time when continuous or rhythmic information about others’ actions is not available. In particular, we tested the hypothesis that making oneself predictable is used as a coordination strategy. Pairs of participants were instructed to coordinate key presses in a two-choice reaction time task, either responding in synchrony (Experiments 1 and 2) or in close temporal succession (Experiment 3). Across all experiments, we found that coactors reduced the variability of their actions in the joint context compared with the same task performed individually. Correlation analyses indicated that the less variable the actions were, the better was interpersonal coordination. The relation between reduced variability and improved coordination performance was not observed when pairs of participants performed independent tasks next to each other without intending to coordinate. These findings support the claim that reducing variability is used as a coordination strategy to achieve predictability. Identifying coordination strategies contributes to the understanding of the mechanisms involved in real-time coordination

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Clonotypic surface structure on human T lymphocytes: functional and biochemical analysis of the antigen receptor complex.

    No full text
    Recent studies using cloned antigen-specific T lymphocytes and monoclonal antibodies directed at their various surface glycoprotein components have led to identification of the human T cell antigen receptor as a surface complex comprised of a clonotypic 90KD Ti heterodimer and the monomorphic 20/25KD T3 molecules. Approximately 30,000-40,000 Ti and T3 molecules exist on the surface of human T lymphocytes. These glycoproteins are acquired and fully expressed during late thymic ontogeny, thus providing the structural basis for immunologic competence. The alpha and beta subunits of Ti bear no precursor-product relationship to one another and are encoded by separate genes. The presence of unique peptides following proteolysis of different Ti molecules isolated by noncrossreactive anticlonotypic monoclonal antibodies supports the notion that variable regions exist within both the alpha and beta subunits. Moreover, N-terminal amino acid sequencing of the Ti beta subunit shows that it bears homology to the first V-region framework of immunoglobulin light chains and represents the product of a gene that rearranges specifically in T lymphocytes. Soluble or Sepharose-bound anti-Ti monoclonal antibodies, like physiologic ligand (antigen/MHC), enhanced proliferative responses to purified IL-2 by inducing a 6-fold increase in surface IL-2 receptor expression. In contrast, only Sepharose-bound anti-Ti or physiologic ligand triggered endogenous clonal IL-2 production and resulted in subsequent proliferation. The latter was blocked by antibodies directed at either the IL-2 receptor or IL-2 itself. These results suggest that induction of IL-2 receptor expression but not IL-2 release occurs in the absence of T3-Ti receptor crosslinking. Perhaps more importantly, the findings demonstrate that antigen-induced proliferation is mediated through an autocrine pathway involving endogenous IL-2 production, release, and subsequent binding to IL-2 receptors

    EEG and fMRI coregistration to investigate the cortical oscillatory activities during finger movement.

    No full text
    Electroencephalography combined with functional magnetic resonance imaging (EEG-fMRI) may be used to identify blood oxygenation level dependent (BOLD) signal changes associated with physiological and pathological EEG event. In this study we used EEG-fMRI to determine the possible correlation between topographical movement-related EEG changes in brain oscillatory activity recorded from EEG electrodes over the scalp and fMRI-BOLD cortical responses in motor areas during finger movement. Thirty-two channels of EEG were recorded in 9 subjects during eyes-open condition inside a 1.5 T magnetic resonance (MR) scanner using a MR-compatible EEG recording system. Off-line MRI artifact subtraction software was applied to obtain continuous EEG data during fMRI acquisition. For EEG data analysis we used the event-related-synchronization/desynchronization (ERS/ERD) approach to investigate where movement-related decreases in alpha and beta power are located. For image statistical analysis we used a general linear model (GLM) approach. There was a significant correlation between the positive-negative ratio of BOLD signal peaks and ERD values in the electrodes over the region of activation. We conclude that combined EEG-fMRI may be used to investigate movement-related oscillations of the human brain inside an MRI scanner and the movement-related changes in the EMG or EEG signals are useful to identify the brain activation sources responsible for BOLD-signal changes

    Changes in cerebral activity after decreased upper-limb hypertonus: an EMG-fMRI study.

    No full text
    OBJECTIVE: Whereas several studies have used functional magnetic resonance imaging (fMRI) to investigate motor recovery, whether therapy to decrease post-stroke hypertonus alters central motor patterns remains unclear. In this study, we used continuous electromyography (EMG)-fMRI to investigate possible changes in movement-related brain activation in patients receiving Botulinum toxin (BoNT-A) for hand-muscle hypertonus after chronic stroke. METHODS: We studied eight stroke patients all of whom had hemiparesis and associated upper-limb hypertonus. All patients underwent an fMRI-EMG recording and clinical-neurological assessment before BoNT-A and 5 weeks thereafter. The handgrip motor task during imaging was fixed across both patients and controls. The movements were metronome paced, movement amplitude and force were controlled with a plastic orthosis, dynamometer and EMG recording. An age-matched control group was recruited from among healthy volunteers underwent the same fMRI-EMG recording. RESULTS: Before BoNT-A, while patients moved the paretic hand, fMRI detected wide bilateral activation in the sensorymotor areas (SM1), in the supplementary motor area (SMA) and cerebellum. After BoNT-A blood oxygenation level-dependent (BOLD) activation decreased in ipsilateral and contralateral motor areas and became more lateralized. BOLD activation decreased also in ipsilateral cerebellar regions and in the SMA. CONCLUSION: Changes in peripheral upper-limb hypertonus after BoNT-A were associated to an improvement in active movements and more lateralized and focalized activation of motor areas. The clinical and EMG-fMRI coregistration technique we used to study hand-muscle hypertonus in patients receiving BoNT-A after chronic stroke should be useful in future studies seeking improved strategies for post-stroke neurorehabilitation

    Fracturing in Dry and Saturated Porous Media

    No full text
    It is now generally recognized that mode I fracturing in saturated geomaterials is a stepwise process. This is true both for mechanical loading and for pressure induced fracturing. Evidence comes from geophysics, from unconventional hydrocarbon extraction, and from experiments. Despite the evidence only very few numerical models capture this behavior. From our numerical experiments, both with a model based on Standard Galerkin Finite Elements in conjunction with a cohesive fracture model, and with a truss lattice model in combination with Monte Carlo simulations, it appears that already in dry geomaterials under mechanical loading the fracturing process is time discontinuous. In a two-phase fracture context, in case of mechanical loading, the fluid not only follows the fate of the solid phase material and gives rise to pressure peaks at the fracturing event, but it also influences this event. In case of pressure induced fracture clearly pressure peaks appear too but are of opposite sign: we observe pressure drops at fracturing. In mode II fracturing, the behavior is brittle while in mixed mode there appears a combination of pressure rises and drops
    corecore