506 research outputs found

    Chronic hypothermia and energy expenditure in a neurodevelopmentally disabled patient: a case study

    Get PDF
    Hypothermia is defined as a core body temperature of \u3c35°C and results in a decrease in measured resting energy expenditure. A 51-year-old mentally disabled patient experienced chronic hypothermia from neurologic sequelae. Because of her continued weight gain and increased body fat in the presence of presumed hypocaloric nutrition, indirect calorimetry measurements were performed twice in a 3-month period. The resting energy expenditure measurements prompted a reduction of her daily caloric intake to prevent further overfeeding. Hypothermia reduces oxygen consumption and, as a consequence, decreases resting energy expenditure. In patients for whom chronic hypothermia is a problem, nutritional intake must be adjusted to prevent overfeeding, excessive weight gain, and the long-term complications of an excess of total calories

    Activity of Bdellovibrio Hit Locus Proteins, Bd0108 and Bd0109, Links Type IVa Pilus Extrusion/Retraction Status to Prey-Independent Growth Signalling

    Get PDF
    Bdellovibrio bacteriovorus are facultatively predatory bacteria that grow within gram-negative prey, using pili to invade their periplasmic niche. They also grow prey-independently on organic nutrients after undergoing a reversible switch. The nature of the growth switching mechanism has been elusive, but several independent reports suggested mutations in the hit (host-interaction) locus on the Bdellovibrio genome were associated with the transition to preyindependent growth. Pili are essential for prey entry by Bdellovibrio and sequence analysis of the hit locus predicted that it was part of a cluster of Type IVb pilus-associated genes, containing bd0108 and bd0109. In this study we have deleted the whole bd0108 gene, which is unique to Bdellovibrio, and compared its phenotype to strains containing spontaneous mutations in bd0108 and the common natural 42 bp deletion variant of bd0108. We find that deletion of the whole bd0108 gene greatly reduced the extrusion of pili, whereas the 42 bp deletion caused greater pilus extrusion than wild-type. The pili isolated from these strains were comprised of the Type IVa pilin protein; PilA. Attempts to similarly delete gene bd0109, which like bd0108 encodes a periplasmic/secreted protein, were not successful, suggesting that it is likely to be essential for Bdellovibrio viability in any growth mode. Bd0109 has a sugar binding YD- repeat motif and an N-terminus with a putative pilin-like fold and was found to interact directly with Bd0108. These results lead us to propose that the Bd0109/Bd0108 interaction regulates pilus production in Bdellovibrio (possibly by interaction with the pilus fibre at the cell wall), and that the presence (and possibly retraction state) of the pilus feeds back to alter the growth state of the Bdellovibrio cell. We further identify a novel small RNA encoded by the hit locus, the transcription of which is altered in different bd0108 mutation background

    Evaluation of behavioural and antioxidant activity of Cytisus scoparius Link in rats exposed to chronic unpredictable mild stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Various human diseases have oxidative stress as one of their component. Many herbs have been reported to exhibit properties that combat oxidative stress through their active constituents such as flavonoids, tannins, phenolic compounds etc. <it>Cytisus scoparius </it>(CS) Link, (Family: Leguminosae), also called <it>Sarothamnus scoparius</it>, has been shown in <it>invitro </it>experiments to be endowed with anti-diabetic, hypnotic and sedative and antioxidant activity. Therefore this study was carried out to evaluate CS for its anxiolytic, antidepressant and anti-oxidant activity in stressed rats.</p> <p>Methods</p> <p>60% methanolic extract of CS was quantified for phenolic content by Folin-Ciocalteau's method. Chronic unpredictable mild stress (CMS) was employed to induce stress in rats. CS (125 and 250 mg/kg, p.o) and diazepam (DZM) (2 mg/kg, p.o) was administered during the 21 day stress exposure period. Anxiolytic and antidepressant activities of CS were assessed in open field exploratory and behavioural despair paradigms, respectively. Plasma glucose and total lipids; endogenous antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT); non-enzymic-ascorbic acid and thiobarbituric acid reactive substances (TBARS) levels were measured in brain, kidneys and adrenals using standard protocols to assess the effect of CS.</p> <p>Results</p> <p>Total phenolic content of CS was found to be 8.54 ± 0.16% w/w. CMS produced anxiogenic and depressive behaviour in experimental rats with metabolic disturbance. Significant decrease in SOD, CAT levels and increase in lipid peroxidation level was observed in stressed rats. CS administration for 21 days during stress exposure significantly increased the ambulatory behaviour and decreased the freezing time in open field behaviour. In behavioural despair test no significant alteration in the immobility period was observed. CS also improved SOD, CAT, and ascorbic acid level and controlled the lipid peroxidation in different tissues.</p> <p>Conclusion</p> <p>CS possesses anti-stress and moderate anxiolytic activity which may be due, in part, to its antioxidant effect that might warrant further studies.</p

    Agent-Based Modeling of Endotoxin-Induced Acute Inflammatory Response in Human Blood Leukocytes

    Get PDF
    Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in modeling this dynamic process has been the (nonlinear) nature of the response that precludes the single-variable assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate signaling cascades and intercellular immune system interactions.An agent-based modeling (ABM) framework is proposed to study the nonlinear dynamics of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system. Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such scenarios involve either a persistent (non)infectious response or innate immune tolerance and potentiation effects followed by perturbations in intracellular signaling molecules and cascades.The ABM framework developed in this study provides insight on the stochastic interactions of the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in accordance with our prior research effort associated with the development of deterministic human inflammation models that include transcriptional dynamics, signaling, and physiological components. The hypothetical scenarios explored in this study would potentially improve our understanding of how manipulating the behavior of the molecular species could manifest into emergent behavior of the overall system

    Transcriptome Kinetics of Circulating Neutrophils during Human Experimental Endotoxemia

    Get PDF
    Polymorphonuclear cells (neutrophils) play an important role in the systemic inflammatory response syndrome and the development of sepsis. These cells are essential for the defense against microorganisms, but may also cause tissue damage. Therefore, neutrophil numbers and activity are considered to be tightly regulated. Previous studies have investigated gene transcription during experimental endotoxemia in whole blood and peripheral blood mononuclear cells. However, the gene transcription response of the circulating pool of neutrophils to systemic inflammatory stimulation in vivo is currently unclear. We examined neutrophil gene transcription kinetics in healthy human subjects (n = 4) administered a single dose of endotoxin (LPS, 2 ng/kg iv). In addition, freshly isolated neutrophils were stimulated ex vivo with LPS, TNFα, G-CSF and GM-CSF to identify stimulus-specific gene transcription responses. Whole transcriptome microarray analysis of circulating neutrophils at 2, 4 and 6 hours after LPS infusion revealed activation of inflammatory networks which are involved in signaling of TNFα and IL-1α and IL-1β. The transcriptome profile of inflammatory activated neutrophils in vivo reflects extended survival and regulation of inflammatory responses. These changes in neutrophil transcriptome suggest a combination of early activation of circulating neutrophils by TNFα and G-CSF and a mobilization of young neutrophils from the bone marrow
    corecore