2,585 research outputs found

    Bridging flavour violation and leptogenesis in SU(3) family models

    Full text link
    We reconsider basic, in the sense of minimal field content, Pati-Salam x SU(3) family models which make use of the Type I see-saw mechanism to reproduce the observed mixing and mass spectrum in the neutrino sector. The goal of this is to achieve the observed baryon asymmetry through the thermal decay of the lightest right-handed neutrino and at the same time to be consistent with the expected experimental lepton flavour violation sensitivity. This kind of models have been previously considered but it was not possible to achieve a compatibility among all of the ingredients mentioned above. We describe then how different SU(3) messengers, the heavy fields that decouple and produce the right form of the Yukawa couplings together with the scalars breaking the SU(3) symmetry, can lead to different Yukawa couplings. This in turn implies different consequences for flavour violation couplings and conditions for realizing the right amount of baryon asymmetry through the decay of the lightest right-handed neutrino. Also a highlight of the present work is a new fit of the Yukawa textures traditionally embedded in SU(3) family models.Comment: 26 pages, 5 figures, Some typos correcte

    Nanoparticle-encapsulated chlorhexidine against oral bacterial biofilms

    Get PDF
    Background: Chlorhexidine (CHX) is a widely used antimicrobial agent in dentistry. Herein, we report the synthesis of a novel mesoporous silica nanoparticle-encapsulated pure CHX (Nano-CHX), and its mechanical profile and antimicrobial properties against oral biofilms. Methodology/Principal Findings: The release of CHX from the Nano-CHX was characterized by UV/visible absorption spectroscopy. The antimicrobial properties of Nano-CHX were evaluated in both planktonic and biofilm modes of representative oral pathogenic bacteria. The Nano-CHX demonstrated potent antibacterial effects on planktonic bacteria and mono-species biofilms at the concentrations of 50-200 mu g/mL against Streptococcus mutans, Streptococcus sobrinus, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans and Enterococccus faecalis. Moreover, Nano-CHX effectively suppressed multi-species biofilms such as S. mutans, F. nucleatum, A. actinomycetemcomitans and Porphyromonas gingivalis up to 72 h. Conclusions/Significance: This pioneering study demonstrates the potent antibacterial effects of the Nano-CHX on oral biofilms, and it may be developed as a novel and promising anti-biofilm agent for clinical use.published_or_final_versio

    Higher Spin Black Holes from CFT

    Full text link
    Higher spin gravity in three dimensions has explicit black holes solutions, carrying higher spin charge. We compute the free energy of a charged black hole from the holographic dual, a 2d CFT with extended conformal symmetry, and find exact agreement with the bulk thermodynamics. In the CFT, higher spin corrections to the free energy can be calculated at high temperature from correlation functions of W-algebra currents.Comment: 24 pages; v2 reference adde

    Gastrojejunocolic fistula after gastrojejunostomy: a case series

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Gastrojejunocolic (GJC) fistulae represent a significant post-surgical cause of morbidity and mortality. GJC fistulae represent rare post-surgical complications, and most are associated with gastric surgery. In the past, this complication has been under-recognized because a fistula may form years after surgery.</p> <p>Case presentation</p> <p>We describe two cases of gastrojejunocolic fistula in men aged 67 and 60 who both initially presented with watery diarrhea and weight loss. Upper GI studies with small bowel follow-through or barium contrast enema studies allowed a conclusive diagnosis to be made. Both patients underwent one-stage en bloc resection, and their postoperative course was uneventful.</p> <p>Conclusion</p> <p>With surgery, this condition is entirely correctable. Pre-operative nutritional status should be evaluated in patients undergoing corrective surgery, and total parenteral nutrition plays a major role in the provision of bowel rest to allow recovery in malnourished patients.</p

    Dipolar collisions of polar molecules in the quantum regime

    Full text link
    Ultracold polar molecules offer the possibility of exploring quantum gases with interparticle interactions that are strong, long-range, and spatially anisotropic. This is in stark contrast to the dilute gases of ultracold atoms, which have isotropic and extremely short-range, or "contact", interactions. The large electric dipole moment of polar molecules can be tuned with an external electric field; this provides unique opportunities such as control of ultracold chemical reactions, quantum information processing, and the realization of novel quantum many-body systems. In spite of intense experimental efforts aimed at observing the influence of dipoles on ultracold molecules, only recently have sufficiently high densities been achieved. Here, we report the observation of dipolar collisions in an ultracold molecular gas prepared close to quantum degeneracy. For modest values of an applied electric field, we observe a dramatic increase in the loss rate of fermionic KRb molecules due to ultrcold chemical reactions. We find that the loss rate has a steep power-law dependence on the induced electric dipole moment, and we show that this dependence can be understood with a relatively simple model based on quantum threshold laws for scattering of fermionic polar molecules. We directly observe the spatial anisotropy of the dipolar interaction as manifested in measurements of the thermodynamics of the dipolar gas. These results demonstrate how the long-range dipolar interaction can be used for electric-field control of chemical reaction rates in an ultracold polar molecule gas. The large loss rates in an applied electric field suggest that creating a long-lived ensemble of ultracold polar molecules may require confinement in a two-dimensional trap geometry to suppress the influence of the attractive dipolar interactions

    Digenean parasites of Chinese marine fishes: a list of species, hosts and geographical distribution

    Get PDF
    In the literature, 630 species of Digenea (Trematoda) have been reported from Chinese marine fishes. These belong to 209 genera and 35 families. The names of these species, along with their hosts, geographical distribution and records, are listed in this paper

    The Minimal Solution to the mu/B_mu Problem in Gauge Mediation

    Get PDF
    We provide a minimal solution to the mu/B_mu problem in the gauge mediated supersymmetry breaking by introducing a Standard Model singlet filed S with a mass around the messenger scale which couples to the Higgs and messenger fields. This singlet is nearly supersymmetric and acquires a relatively small Vacuum Expectation Value (VEV) from its radiatively generated tadpole term. Consequently, both mu and B_mu parameters receive the tree-level and one-loop contributions, which are comparable due to the small S VEV. Because there exists a proper cancellation in such two kinds of contributions to B_mu, we can have a viable Higgs sector for electroweak symmetry breaking.Comment: 15 pages, 2 figures, version published on JHE

    Molecular cloning and transcriptional activity of a new Petunia calreticulin gene involved in pistil transmitting tract maturation, progamic phase, and double fertilization

    Get PDF
    Calreticulin (CRT) is a highly conserved and ubiquitously expressed Ca2+-binding protein in multicellular eukaryotes. As an endoplasmic reticulum-resident protein, CRT plays a key role in many cellular processes including Ca2+ storage and release, protein synthesis, and molecular chaperoning in both animals and plants. CRT has long been suggested to play a role in plant sexual reproduction. To begin to address this possibility, we cloned and characterized the full-length cDNA of a new CRT gene (PhCRT) from Petunia. The deduced amino acid sequence of PhCRT shares homology with other known plant CRTs, and phylogenetic analysis indicates that the PhCRT cDNA clone belongs to the CRT1/CRT2 subclass. Northern blot analysis and fluorescent in situ hybridization were used to assess PhCRT gene expression in different parts of the pistil before pollination, during subsequent stages of the progamic phase, and at fertilization. The highest level of PhCRT mRNA was detected in the stigma–style part of the unpollinated pistil 1 day before anthesis and during the early stage of the progamic phase, when pollen is germinated and tubes outgrow on the stigma. In the ovary, PhCRT mRNA was most abundant after pollination and reached maximum at the late stage of the progamic phase, when pollen tubes grow into the ovules and fertilization occurs. PhCRT mRNA transcripts were seen to accumulate predominantly in transmitting tract cells of maturing and receptive stigma, in germinated pollen/growing tubes, and at the micropylar region of the ovule, where the female gametophyte is located. From these results, we suggest that PhCRT gene expression is up-regulated during secretory activity of the pistil transmitting tract cells, pollen germination and outgrowth of the tubes, and then during gamete fusion and early embryogenesis

    Experimental and theoretical investigation of ligand effects on the synthesis of ZnO nanoparticles

    Get PDF
    ZnO nanoparticles with highly controllable particle sizes(less than 10 nm) were synthesized using organic capping ligands in Zn(Ac)2 ethanolic solution. The molecular structure of the ligands was found to have significant influence on the particle size. The multi-functional molecule tris(hydroxymethyl)-aminomethane (THMA) favoured smaller particle distributions compared with ligands possessing long hydrocarbon chains that are more frequently employed. The adsorption of capping ligands on ZnnOn crystal nuclei (where n = 4 or 18 molecular clusters of(0001) ZnO surfaces) was modelled by ab initio methods at the density functional theory (DFT) level. For the molecules examined, chemisorption proceeded via the formation of Zn...O, Zn...N, or Zn...S chemical bonds between the ligands and active Zn2+ sites on ZnO surfaces. The DFT results indicated that THMA binds more strongly to the ZnO surface than other ligands, suggesting that this molecule is very effective at stabilizing ZnO nanoparticle surfaces. This study, therefore, provides new insight into the correlation between the molecular structure of capping ligands and the morphology of metal oxide nanostructures formed in their presence

    A Note on Vectorial AdS5_5/CFT4_4 Duality for Spin-jj Boundary Theory

    Get PDF
    The vectorial holographic correspondences between higher-spin theories in AdS5_5 and free vector models on the boundary are extended to the cases where the latter is described by free massless spin-jj field. The dual higher-spin theory in the bulk does not include gravity and can only be defined on rigid AdS5_5 background with S4S^4 boundary. We discuss various properties of these rather special higher-spin theories and calculate their one-loop free energies. We show that the result is proportional to the same quantity for spin-jj doubleton treated as if it is a AdS5_5 field. Finally, we consider even more special case where the boundary theory itself is given by an infinite tower of massless higher-spin fields.Comment: 27 pages, version to appear in JHE
    corecore