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1 Introduction

The holographic dualities where the boundary theories carry vector representations of U(N)

or O(N) have been actively studied in recent years. These vector models are conjectured

to be dual to Vasiliev’s higher spin gravity [1, 2] in the bulk. The proposal was originally

made for AdS dimensions four or higher [3–7] and then extended to AdS3/CFT2 in [8].

We refer the reader to the reviews [9, 10] for further details and progresses in this area.

The vectorial dualities has simple classical bulk spectra which can be exactly identified.

This special feature makes it possible to compute the one-loop partition function of the

bulk theory by simply collecting the quantities for individual fields [11–14] and led to

possible insights into the existence of multiparticle symmetries of the theory [15, 16]. In

general dimensions, the one-loop partition function has been computed for the type A

Vasiliev theory dual to free scalar on the boundary in [17–19]. In addition to the free

scalar/type A duality, two other dualities can be considered in AdS5/CFT4 whose boundary

theories are described by free fermion and Maxwell fields, respectively. The corresponding

five-dimensional bulk theories are refered to as type B and C higher-spin theories. The

spectific bulk description is known only for type-A case: it is described by the any-d Vasiliev

equation [20]. About the construction of type-B higher-spin theory, see [21]. Even though

we do not know exact formulations of type B and C theories, their perturbative field
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contents can be identified from the correspondence, and the one-loop partition function

was computed in [22]. See [23–29] for other discussions and more recent developments on

the vectorial dualities, and [30, 31] for the extension of the one-loop partition function

computation to free scalar and Yang-Mills adjoint models.

Motivated by these developments, in this paper, we consider a straightforward but in a

sense rather exotic generalization of type A, B and C dualities in AdS5/CFT4 . The gener-

alization is based on the fact that the short representations of four-dimensional conformal

symmetry so(2, 4) are the spin-j massless particles where j is any half-integer number.

Clearly the cases of j = 0, 12 and 1 give the type A, B and C models, whereas the other

cases with j ≥ 3
2 have not been studied much and there are good reasons for that. See the

appendix C of [28] for previous discussions on the point in the literature. Massless fields

with spin j ≥ 3
2 can be defined in a conformally flat and Einstein background [32, 33].

Hence, one can consider S4 as a consistent background, but another typical background

S1 × S3 is not compatible. Even though the spin-j theory on S4 admits global conformal

symmetry — its Hilbert space carry so(2, 4) unitary representation — it does not have a

local energy momentum tensor. Moreover, the symmetry cannot be realized at the level of

gauge potential but only curvature [34], hence for instance, the conformal symmetry cannot

be realized in the standard Fronsdal formulation at least locally. Despite of these aspects,

as we shall show, single-trace operators constructed from Fronsdal fields do carry proper

representations of conformal algebra. This encourages us to consider the holographic du-

alities based on the vector models of massless spin-j field, whose bulk dual theory we shall

refer to as ‘type-j’ higher-spin theory in analogy to type A, B and C. The type-j theories

have another exotic property that they do not involve any massless spin-two field. Hence,

these theories are non-gravitational higher-spin gauge theories in rigid AdS5 background.

This generalized version of AdS/CFT duality have been already considered in different

contexts [35, 36]. We also analyze an even more exotic but interesting model where the

boundary theory involves all massless higher-spin fields. Effectively the boundary theory

is the free limit of four-dimensional Vasiliev theory defined now on the S4.

The rest of the present paper is organized as follows. In section 2, we briefly review the

spin-j doubleton representations, their character formulae and the single-trace operators.

In section 3, we move to the AdS5 side and discuss classical aspects of the bulk duals of

the spin-j vector models, including their field content, cubic interactions and higher-spin

symmetries. In section 4, we calculate the one-loop vacuum energy of type-j higher-spin

theory and the bulk theory dual to all massless integral spins. We also comment on the

Casimir energy. The final section 5 contains discussions.

2 Vector model of spin-j CFT4

2.1 Massless spin-j theory

In four dimensions, free massless fields of any spin carry representations of conformal

symmetry so(2, 4) and they correspond to the UIR D(j + 1, (j,±j)) , where D(∆, (ℓ1, ℓ2))

is the UIR having lowest energy ∆ and its eigenvector(or tensor) transforms as (ℓ1, ℓ2)

Young diagram representation of so(4) . In the notation of su(2, 2) they are denoted by
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D(j + 1, [j, 0]) or D(j + 1, [0, j]) where [j+, j−] is the (2 j+ + 1) × (2 j− + 1) dimensional

representation of su(2) ⊕ su(2) ⊂ su(2, 2) . These representations are often referred as

to spin-j singleton or doubleton. The sign of ℓ2 or asymmetry in j+ and j− reflects that

representations are chiral or anti-chiral whose field theoretical realization would require

complexification of fields. Here, we consider parity-invariant combination,

Sj := S[j,0] ⊕ S[0,j] , (2.1)

with

S[j,0] = D(j+1, [j, 0]) = D(j+1, (j, j)) , S[0,j] = D(j+1, [0, j]) = D(j+1, (j,−j)) . (2.2)

The character of the spin-j doubleton is given by

χS[j,0]
= χj+1,[j,0] − χj+2,[j− 1

2
, 1
2
] + χj+3,[j−1,0] ,

χS[0,j]
= χj+1,[0,j] − χj+2,[ 1

2
,j− 1

2
] + χj+3,[0,j−1] , (2.3)

in terms of the character χ∆,[j+,j−] for the Verma module V(∆, [j+, j−]) . It is given by

χ∆,[j+,j−](q, x+, x−) = q∆ P (q, x+, x−)χj+(x+)χj−(x−) , (2.4)

where χj is the su(2) character in (2j + 1)-dimensional representation:

χj(x) =
xj+

1
2 − x−j− 1

2

x
1
2 − x−

1
2

=
sin(j + 1

2)α

sin α
2

[x = ei α] , (2.5)

and P (q, x+, x−) takes the form,

P (q, x+, x−) =
1

(

1− q x
1
2
+ x

1
2
−

)(

1− q x
− 1

2
+ x

1
2
−

)(

1− q x
1
2
+ x

− 1
2

−

)(

1− q x
− 1

2
+ x

− 1
2

−

) . (2.6)

Therefore, the characters for χS[j,0]
and χS[0,j]

read

χS[j,0]
(q, x+, x−) = qj+1 P (q, x+, x−)

[

χj(x+)− q χj− 1
2
(x+)

(

x
1
2
− + x

− 1
2

−

)

+ q2 χj−1(x+)

]

= e−j β

(

coshβ cos α+

2 − cos α−

2

)

csc α+

2 sin jα+ + sinhβ cos j α+

2
(

coshβ − cos α++α−

2

)(

coshβ − cos α+−α−

2

) ,

χS[0,j]
(q, x+, x−) = χS[j,0]

(q, x−, x+) , (2.7)

where q = e−β and x± = ei α± . Let us remark that when j = 0 and j = 1/2 the above

character successfully reproduces that of scalar and spinor doubleton thanks to the iden-

tities χ−1/2 = 0 and χ−1 = −1 . Combining χS[j,0]
and χS[0,j]

, we obtain the character of

parity-invariant representation as

χSj
(β, α+, α−) = χS[j,0]

(β, α+, α−) + χS[0,j]
(β, α+, α−) . (2.8)

This character will play a key role in the subsequent analysis of this paper.
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When j is an integer, the boundary operator corresponding to Sj is the curvature

tensor, Ra1b1,...,ajbj , having (j, j) Young diagram representation. They are traceless — any

contraction of two indices vanish — and subject to the Bianchi identity and the conservation

condition,

∇[cRa1b1],...,aℓbℓ = 0 , ∇a1Ra1b1,...,aℓbℓ = 0 , (2.9)

where the background is given by a conformally flat Einstein metric. In the spinor index no-

tation, the chiral and anti-chiral part of the traceless curvatures, namely Weyl tensors, read

Cα1···α2j , Cβ̇1···β̇2j
, (2.10)

Here αi’s and β̇i’s take two values and they are fully symmetric. The Bianch identity (or

conservation condition) (2.9) becomes the Bargmann-Wigner equations [37],

∇α1β̇Cα1···α2j = 0 , ∇αβ̇1Cβ̇1···β2j
= 0 . (2.11)

Even though the realization through the curvature tensor makes manifest the conformal

symmetries, treating the curvature as fundamental fields is not compatible with conven-

tional action principle.1 In fact, the Bianchi identity can be solved in terms of gauge

potential φa1···aj as [39–41]. In flat space, the solution reads

Ra1b1,...,ajbj = ∂[a1 · · · ∂[aj φb1]···bj ] , (2.12)

with gauge symmetry,

δ φa1···aj = ∂(a1 ξa2···aj) . (2.13)

This makes link the curvature formulation to the Fronsdal’s one [42] having two-derivative

equation,

Fa1···aj = �φa1···aj − j ∂(a1∂
b φa2···aj)b +

j(j − 1)

2
∂(a1∂a2 φa3···aj)b

b = 0 . (2.14)

For the consistency, the gauge parameter and fields have to satisfy traceless and double-

traceless condition: ξa1a1···aj−1 = 0 and φa1a2
a1···aj = 0 . The action giving (2.14) reads

SFronsdal =

∫

d4xφa1···aj (x)Ga1···aj (x) , (2.15)

where Ga1···aj = Fa1···aj − 1
4 s(s − 1) η(a1a2 Fa3···aj) is the spin-j generalization of ‘Einstein

tensor’. The Fronsdal’s formulation reduces to that of Maxwell and Fierz-Pauli for the

spin one and two cases. For half-integer j, there exists a similar formulation making use

of rank-j tensor spinor [43]. The Fronsdal formulation has many advantages such as more

standard form of equation and existence of conventional action principle. However, on

the contrary to the curvature formulation, it does not admit any local form of conformal

transformation at the level of gauge potential φa1···aj (see [34] and references therein for

more details). Moreover, for spin j ≥ 3/2 , it can be defined only on a conformally flat and

Einstein background [32, 33].

1In principle, there may exist non-conventional but manifestly conformal invariant actions involving

curvature-like fields. See e.g. [38] for an attempt of relaxing locality to get a curvature action.
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2.2 Single-trace operators of the vector model CFT

U(N) vector model. The spin-j U(N) model is described by N copies of complex

massless spin-j fields. In Fronsdal formulation, the spin-j action is given by

SCFT =

∫

d4x

N
∑

i=1

φ̄
a1···aj
i Gi a1···aj . (2.16)

All U(N)-invariant single-trace operators are given by bilinear in the Weyl curvatures

Ci α1···α2j and Ci β1···β2j , and their complex conjugates. The operator content can be iden-

tified group theoretically and divided into three parts as

Hj,U(N) = HSym

j,U(N) ⊕HMixSym

j,U(N) ⊕HMassive

j,U(N) . (2.17)

The first part corresponds the cross product (in considering the fact that Sj = S[j,0]⊕S[0,j]),

HSym

j,U(N) = (S[j,0] ⊗ S[0,j])⊕ (S[0,j] ⊗ S[j,0]) = 2
∞
⊕

s=2j

D
(

s+ 2,
[s

2
,
s

2

])

, (2.18)

and the second and third parts come from the sum of ‘square’,

HMixSym

j,U(N) ⊕HMassive

j,U(N) = (S[j,0] ⊗ S[j,0])⊕ (S[0,j] ⊗ S[0,j]) , (2.19)

with

HMixSym

j,U(N) =

∞
⊕

s=2j+1

D
(

s+ 2,
[s

2
+ j,

s

2
− j

]

PI

)

, (2.20)

and

HMassive

j,U(N) = 2D(2j + 2, [0, 0])⊕
2j
⊕

r=1

D(2j + 2, [r, 0]PI) . (2.21)

Here, the subscript PI means the parity-invariant combination,

[j+, j−]PI = [j+, j−]⊕ [j−, j+] . (2.22)

The UIRs in HMassive

j,U(N) (2.19) are long and correspond to non-conserved currents (dual to

massive fields in AdS). Their explicit forms are given by

Oα1···α2r = C(α1···αr|γ1···γ2j−r
C̄αr+1···α2r)

γ1···γ2j−r ,

Oβ̇1···β̇2r
= C(β̇1···β̇r|δ̇1···δ̇2j−r

C̄β̇r+1···β̇2r)
δ̇1···δ̇2j−r , (2.23)

Here, the summation over the internal U(N) index should be understood. The UIRs of

HSym

j,U(N) (2.18) are the symmetric rank s ≥ 2j conserved currents which are nothing but

the traceless Bel-Robinson current [44, 45],

Jα1···αs

β̇1···β̇s =

s−2j
∑

n=0

(−1)n
(

s

n

)(

s

2j + n

)

×

× ∂
(β̇1

(α1
· · · ∂β̇n

αn
Cαn+1···αn+2j

∂
β̇n+1

α2j+n+1
· · · ∂β̇s−2j

αs)
C̄

β̇s−2j+1···β̇s) . (2.24)
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The other symmetric conserved currents J ′
α1···αsβ̇1···β̇s

have the same form as above but C

and C̄ interchanged. Lastly, the UIRs in HSym

j,U(N) (2.20) are the mixed-symmetry conserved

currents having the form,

Jα1···αs+2j
β̇1···β̇s−2j =

s−2j
∑

n=0

As,j
n × (2.25)

× ∂
(β̇1

(α1
· · · ∂β̇n

αn
Cαn+1···αn+2j

∂
β̇n+1

α2j+n+1
· · · ∂β̇s−2j)

αs
C̄αs+1···αs+2j)

.

with s ≥ 2j + 1 and the coefficient As,j
n to be determined by the conservation condition,

∂α1β̇1Jα1···αs+2j β̇1···β̇s−2j
= 0 . (2.26)

The explicit derivation of these currents can be most conveniently done in the unfolded

formulation. See [45–47] for the details.

O(N) vector model. When the massless spin-j fields are real, the model becomes O(N),

and its single-trace operator spectrum is given by

Hj,O(N) = Sj ⊗cyc Sj = HSym

j,O(N) ⊕HMixSym

j,O(N) ⊕HMassive

j,O(N) , (2.27)

where ⊗cyc is the (anti-)symmetric tensor product for (half-)integer j and

HSym

j,O(N) =

∞
⊕

s=2j

D
(

s+ 2,
[s

2
,
s

2

])

,

HMixSym

j,O(N) =
⊕

even s≥2j+1

D
(

s+ 2,
[s

2
+ j,

s

2
− j

]

PI

)

,

HMassive

j,O(N) = 2D(2j + 2, [0, 0])⊕
⊕

2≤even r≤2j

D(2j + 2, [r, 0]PI) . (2.28)

Correspondingly, the operatorsOα1···α2r with odd r and the symmetric currents J ′
α1···αsβ̇1···β̇s

are projected out. Let us note that in both of U(N) and O(N) model, they do not admit

any conserved rank-two tensor if j ≥ 3/2 . Hence, there is no energy-momentum tensor

in these models, implying that the AdS dual theory — type-j higher-spin theory — is

non-gravitational.

3 Classical type-j higher spin theory in AdS5

In this section, we consider the AdS5 dual of the spin-j vector model CFT in four di-

mensions. They will be referred here as to type-j higher-spin theory. Starting from the

discussion of their field content, we discuss about its underlying higher-spin algebra.

3.1 Field content

The field content of type-j higher-spin theories are defined to coincide with the single-trace

operator spectrum of the dual theory, which have been reviewed in the previous section.
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Depending on whether the boundary theory is U(N) or O(N), the bulk theory differs:

non-minimal theory dual to the former and minimal one dual to the latter.

There appear three types of fields. The first one is the massive fields

Πµ1···µr,ν1···νr [r = 0, (1), . . . , (2j − 1), 2j] , Π′ , (3.1)

where minimal theory has only even r and there are two scalar fields Π and Π′ with the

same mass. The above fields are dual to the operator Oα1···α2r and its conjugate (2.23),

hence carrying D(2j + 2, (r, r)PI) representation. Their mass-squared value is given by

m2 = (2j + 2)(2j − 2)− 2r . (3.2)

These fields are the generalization of the scalar field in the spectrum of type A theory. Next,

we have two types of massless fields: the symmetric one and the mixed-symmetry one

Φµ1···µs , (Φ′
µ1···µs

) [s = 2j, 2j + 1, . . .] ,

Ψµ1···µs,ν1···ν2j [s = (2j + 1), 2j + 2, . . .] .
(3.3)

In the minimal theory, we have only one copy of symmetric fields and even s mixed symme-

try fields. The above fields are all gauge fields, hence the theory has infinite amount of gauge

symmetries analogously to the type A, B, C models. The gauge symmetry takes the form of

δΦµ1···µs = ∇(µ1
εµ2···µs) +O(g) ,

δΨµ1···µs,ν1···ν2j = ∇(µ1
ξµ2···µs),µ1···µ2j

+O(g) ,

δΠµ1···µr,ν1···νr = O(g) , (3.4)

where ∇µ is the AdS covariant derivative and g is the coupling constant of the bulk theory,

hence O(g) contains the field-dependent terms.

Apart from the type A theory, in all cases of type-j, the theory involves mixed-

symmetry gauge fields (s, 2j)PI. The degrees of freedom (DoF) of mixed-symmetry fields

with definite parity — (s, 2j) or (s,−2j) — can be easily counted as

dim
(

π
O(4)
(s,±2j)

)

− dim
(

π
O(4)
(s−1,±2j)

)

= 2 s+ 1 , (3.5)

where π
O(4)
(ℓ1,ℓ2)

indicates the O(4) tensor representation corresponding to the Young diagram

(ℓ1, ℓ2) . Let us note that the DoF do not depend on the value of j (of type-j theory). Hence,

all the mixed-symmetry gauge fields of definite parity have exactly same number of DoF,

and in particular coincides with the totally-symmetric field. In terms of parity-invariant

fields carrying D(s + 2, (s, 2j)PI), the mixed-symmetry fields with s ≥ 2j + 1 have twice

many DoF as the symmetric field. In the flat limit [48–52], the mixed-symmetry gauge

field of (ℓ1, ℓ2) type decomposes into the massless helicity modes corresponding to the O(3)

— massless little group in five dimensions — Young diagram,

ℓ1 ⊕ ℓ1 ⊕ ℓ1 ⊕ · · · ⊕ ℓ1

ℓ2
. (3.6)
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Besides the first two helicity modes, all the rest having more than one boxes in the second

row vanish identically hence do not propagate in five dimensions.2 The first helicity mode

is that of totally symmetric field and the second one can be dualized to give again totally

symmetric DoF:
ℓ1 ∼ ℓ1 . (3.7)

This accounts the twice many DoF of the mixed-symmetry gauge fields in AdS5 . Even

though their DoF are related to those of the totally-symmetric field and they reduce to the

latter in the flat limit, these mixed-symmetry gauge fields are genuinely different represen-

tations in AdS5.

3.2 Cubic interactions

Let us consider the interaction nature of the type-j theory. Like the field content, the inter-

action structures are to match with the correlation functions of boundary operators through

the Witten diagram. We shall mostly focus on the cubic interactions of these higher spin

theories which are dual to the three-point correlators on the boundary. Cubic interactions

of a gauge theory already tells many characteristic properties of the theory. The appendix

C.1 of [28] contains several discussions on the structure of cubic interactions. Here, we

provide additional discussions which, we hope, help to better understand the theory.

To make more clear our discussion, let us begin with a few comments on the generality.

When a gauge theory has cubic interactions, then the field-dependent part of the gauge

transformation (the O(g) part of (3.4)) should have terms linear in the field, so that the

latter compensate the linearized gauge transformation of cubic vertices. Cubic interactions

compatible with gauge symmetries can be classified into three different groups. The first

group is what is called non-Abelian interactions, which is the part encoding the information

of the underlying global symmetry which the theory is gauging. In other words, the bracket

of the global symmetry generators are determined by these cubic vertices hence in the ab-

sence of these interactions, the generators would commute hence the algebra would remain

Abelian. Typical such interactions are the self-couplings of Einstein gravity and Yang-Mills

theory. Abelian cubic interactions are split again into two groups. The first one is ‘deform-

ing’ interactions which requires that the gauge transformation of the relevant fields have

linear term in field. Typical examples are the minimal coupling to the matter. Due to this

coupling, matter field transforms under the gauge symmetry. The rest of the couplings are

‘non-deforming’ interactions whose presence does not necessitate any linear term in the

gauge transformations. Non-minimal curvature interactions are the typical examples.

Higher spin algebra

Now considering back the type-j theory, all its non-Abelian interactions are in fact to be

dictated by global symmetry, that is, higher spin algebra. With additional input that

the boundary dual theory is the massless spin-j, we can identify the relevant higher spin

algebra. It has two types of generators, which are respectively the solutions of the Killing

2However, they may become relevant for the would-be gauge modes surviving on the boundary.
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equations,

∇(µ1
εµ2···µs) = 0 , ∇(µ1

ξµ2···µs),µ1···µ2j
= 0 . (3.8)

As O(2, 4) tensors, they are characterized by

s− 1
s− 1

[s ≥ 2j] ,
s− 1
s− 1

2 j
[s ≥ 2j + 1] , (3.9)

and again depending on whether the theory is minimal (or not), the algebra contains one (or

two) copy of (s−1, s−1) generators and even s (and odd s) generators of mixed-symmetry

type (s− 1, s− 1, 2j).

One of the simplest way to understand the type-j higher spin algebra, which we shall

refer as to HSj , is to view it as the maximal symmetry of the boundary theory, that is,

the endomorphism algebra of the spin-j doubleton Hilbert space:

HSj = End(Sj) . (3.10)

Since Sj can be decomposed into Sj = S[j,0]⊕S[0,j] where S[j,0] = D(j+1, [j, 0]) , the type-j

higher spin algebra also splits into

HSj = End(S[j,0])⊕ End(S[0,j])⊕Hom(S[j,0],S[0,j])⊕Hom(S[0,j],S[j,0]) . (3.11)

The first two parts End(S[j,0]) ⊕ End(S[0,j]) form an subalgebra, and they are isomorphic

to each other,

hsj = End(S[j,0]) ≃ End(S[0,j]) . (3.12)

In the minimal theory case, we have only one copy of hsj as subalgebra. hsj contains only

the generators of symmetric spin s ≥ 2j and can be obtained from the universal enveloping

algebra of su(2, 2) by quotienting it with the annihilator of spin-j module.3 At the level of

Lie algebra, one can consider j as a continuous parameter, say λ, then hsj can be enhanced

to hsλ(su(2, 2)) containing all the generators of symmetric spin s ≥ 1 . More explicitly, it is

given as the coset of the tensor algebra generated by su(2, 2) generators by the equivalence

relation [55],

L
[a
b ⊗ L

c]
d + δ

[a
(b L

c]
d) + λ δ

[a
[b L

c]
d] +

λ2 − 1

4
δ
[a
[b δ

c]
d] ∼ 0 , (3.13)

where La
b are the su(2, 2) generators. When the parameter λ takes an half-integer val-

ues j (so that the Lie-algebra representation uplifts to that of Lie-group), the algebra

hsj(su(2, 2)) develops the ideal algebra hsj (3.12). The coset algebra hsj(su(2, 2))/hsj is

isomorphic to

u

(

2

3
j

(

j2 +
1

2

)

,
2

3
j
(

j2 − 1
)

)

or u

(

2

3
j

(

j2 − 1

4

)

,
2

3
j

(

j2 − 1

4

))

, (3.14)

3The annihilator of spin-j module is the maximal ideal of the universal enveloping algebra of su(2, 2),

namely Joseph ideal [53]. The representations underlying Joseph ideal are called minimal representations, so

the spin-j doubletons are the minimal representations of su(2, 2). Joseph ideals and minimal representations

are extensively studied in mathematics community, and its discussion in the context of higher spin algebra

can be found in [54].
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depending on whether 2j is even or odd.4 The one-parameter family algebra has been

first considered in higher spin context in [56], and more recent discussions can be found

in [54, 57–60].

The type-j higher spin algebra HSj can be realized by oscillators with commutation

relation,

[Y α
A , Y β

B ]⋆ = ηAB ǫαβ , { θiA , θjB }⋆ = ηAB δij , (3.15)

where A,B, α, β and i, j are respectively the O(2, 4), Sp(2) and O(2j) fundamental indices.

Noticing that the so(2, 4), realized in these oscillators as

MAB = Y α
A YBβ + θiA θBj , (3.16)

commutes with the osp(2j|2),

Kαβ = Y α
A Y Aβ , Rij = θiA θAj , Sαi = Y α

A θAi , (3.17)

one can define a higher spin algebra from the Weyl-Clifford algebra A6,12j freely generated

by Y a
A and θiA. More precisely, it is given by the quotient of the osp(2j|2)-centralizer by

the osp(2j|2) ideal. See [21, 61] for more details. This realization makes use of vector

oscillators, but for so(2, 4) it is more convenient to use spinor oscillators based on su(2, 2)

(see [3, 21, 62, 63] for related discussions) with commutation relations,

[ ya , ȳb ]⋆ = δab , { θia , θ̄bj }⋆ = δij . (3.18)

The a, b are i, j now the SU(2, 2) and O(2j) fundamental indices. With these oscillators,

the su(2, 2) generators are given by

La
b = ya ȳb + θ̄ai θ

i
b , (3.19)

and they commute with gl(2j|1) given by

K = ya ȳb , Ri
j = θ̄ia θ

a
i , Si = ya θia S̄i = ȳa θ̄

a
i . (3.20)

Hence, one can obtain a higher spin algebra as the gl(2j|1)-centralizer of Weyl-Clifford al-

gebra A4,8j by the gl(2j|1) ideal. However the higher spin algebras defined in these ways are

not the type-j one, HSj , because the former always include the su(2, 2) generators associ-

ated with the graviton in the bulk whereas the type-j theory does not have any symmetric

4In fact, the algebra hsλ(su(2, 2)) is just a particular case of slN higher spin algebra: in the same way one

can define hsλ(slN ) and show that the appearance of ideal and finite quotient algebra is a generic feature

of this series of higher spin algebra: when N(λ− 1)/2 takes an integer value M , hsλ(slN ) develops an ideal

consisting of generators with r ≥ M and the corresponding coset algebra becomes gl(N+M−1

M
) consisting of

the generators with r = 0, 1, . . . ,M − 1 . The most well-known example of this would be the N = 2 case

where we get the half of the three dimensional higher spin algebra, often referred to as hs(λ) . Let us also

remind the reader that the coset algebras appearing in this way starting from the right real form su(1, 1)

and su(2, 2) respectively for three and six dimensional cases do not have the right reality structure to be

interpreted as unitary theory of massless higher spin fields because they have alternating kinetic term sign.

Instead the ideal parts have the right reality structure: its bilinear form has all same sign for each spin

blocks (of course, in each spin block there are negative norm components, but what is important is the

relative sign between different spins).
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spin fields lower than spin 2j. Though not manifest in the oscillator form, these oscillator

algebras are not semi-simple but contains an ideal corresponding to HSj . By focusing

on the subalgebra hsj sector, the oscillator realization corresponds hence to hsj(su(2, 2))

rather than the ideal hsj . See the forthcoming work [64] for the detailed analysis.

4 One-loop partition function of type-j theory

The partition function of a generic theory in AdS5 can be expanded order by order in the

number of loops as

ΓH = − log

[

∫

∏

i

Dϕi exp

(

−1

g
SH[ϕ]

)

]

=
1

g
SH + Γ(1)

H +O(g) , (4.1)

where the first term, SH, is the classical action evaluated with vacuum field configuration

and the one-loop part Γ(1)

H can be computed by evaluating the Gaussian path integral. Since

Γ(1)

H depends only on the field content H , we can calculate the quantity for the individual

fields and resum them for the total one-loop result. In [17, 18], this resummation has

been carried out for Vasiliev theory on AdSd+1 with Sd boundary. The resummation

requires additional regularization but it turns out that if we keep the UV regulator while

resumming then the summation is convergent and the UV divergence also cancels in all

the cases. Recently, in [30, 31], the authors of the current paper have introduced a method

of doing this resummation with regulator turned on. In other words, it allows to calculate

the spectral zeta function directly from the character underlying the field content of the

theory. This method, referred to as Character Integral Representation of Zeta function

(CIRZ), allows us to bypass the explicit identification of the field content and the subtlety

arising in the resummation process.

4.1 One-loop vacuum energy in AdS5 with S4 boundary

The renormalized one-loop partition function (or free energy) will be referred to as vacuum

energy and takes the form,

Γ(1) ren

H = (−1)F γH logR , (4.2)

where R is the IR cut-off of the AdS5 space, γH is a constant which depends on the theory

and F is 0 for bosonic H and 1 for fermionic H. Due to the logR term, for the entire

AdS5 with R → ∞, the above quantity is divergent. Nevertheless, the way it diverges,

namely the factor γH, encodes the one-loop information of the theory. Using the CIRZ

method [30, 31], we have shown that γH is given by the sum of three quantities,

γH = γH|2 + γH|1 + γH|0 , (4.3)

where each of γH|n is the contour integral,

γH|n = − (−4)n n!

∮

dβ

2πi

fH|n(β)

β2(n+1)
, (4.4)
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of a function given by the character of the theory:

fH|2(β) =
sinh4 β

2

2
χH (β, 0, 0) ,

fH|1(β) = sinh2
β

2

[

sinh2 β
2

3
− 1− sinh2

β

2

(

∂2
α1

+ ∂2
α2

)

]

χH (β, α+, α−)

∣

∣

∣

∣

α±=0

,

fH|0(β) =



1 +
sinh2 β

2

(

3− sinh2 β
2

)

3

(

∂2
α1

+ ∂2
α2

)

−sinh4 β
2

3

(

∂4
α1

− 12 ∂2
α1
∂2
α2

+ ∂4
α2

)

]

χH (β, α+, α−)

∣

∣

∣

∣

α±=0

.

(4.5)

In the AdS theories dual to vector models on the boundary, the functions fH|n are analytic

except for poles at the origin. In such cases, we can take the contour as the circle around the

origin and use the residue theorem. In the end, the quantities γH|n are simply proportional

to the β2n+1 Laurent coefficient of fH|n . Armed with the results (4.3 – 4.5), let us calculate

the vacuum energy of the non-minimal and minimal type-j higher spin theory in AdS5 .

In the type A, B and C cases, the vacuum energies were found to be proportional

to those of spin 0,1/2 and 1 doubletons treated as if they are bulk fields. In fact, these

quantities also happen to coincide with the genuine one-loop partition function of boundary

theory on S4 once the standard UV/IR correspondence of AdS/CFT is used. Having in

mind that this might generalize to the type-j theories, we first calculate the vacuum energy

of spin-j doubleton treated as if it is AdS5 field. Eventually, the latter quantity will be

related to the vacuum energy of type-j theory.

Vacuum energy of spin-j doubleton. We first calculate the AdS5 vacuum energy of

spin-j doubleton even though it can be better described as massless spin-j field on S4 .

In principle, we would need a AdS5 description of spin-j doubleton to compute such a

quantity, but the CIRZ method allows us to avoid this step. Practically, it is sufficient to

know the character χSj
of spin-j doubleton representation, which is already given in (2.8).

We may therefore calculate first the functions fSj |n following the recipe (4.5) to obtain

fSj |2(β) =
1

8
e−jβ [2 j (coshβ − 1) + sinhβ] ,

fSj |1(β) =
1

12
e−jβ

[

4
(

j3 + j
)

(coshβ − 1) +
(

6 j2 + 1
)

sinhβ
]

,

fSj |0(β) =
1

6
e−jβ j

[

2 j2(j2 + 2) coshβ + (5 j3 + j) sinhβ − 2(j2 − 1)2
]

.

(4.6)

We then simply Laurent expand the above to extract the relevant coefficient to get

γSj |2 =
15 j4 − 1

30
, γSj |1 =

6 j4 − 3 j2 + 1

18
, γSj |0 =

j4 − j2

2
. (4.7)

Finally, summing these three numbers, we obtain the vacuum energy as

Γ(1) ren

Sj
= (−1)2j

60 j4 − 30 j2 + 1

45
logR , (4.8)
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where the overall (−1)2j accounts for fermionic statistics of particles with half-integer j.

We readily see that these expressions reduce to their previously computed counterparts for

the special case of j = 0, 1/2 and 1:

Γ(1) ren

S0
=

1

45
logR , Γ(1) ren

S 1
2

=
11

180
logR , Γ(1) ren

S1
=

31

45
logR . (4.9)

As an side, the vacuum energies of the chiral and anti-chiral singletons S[j,0] and S[0,j] are

the half of the vacuum energy of Sj . We now turn to the holographic duals of vector

models built from such boundary fields.

Non-minimal type-j theory. This theory is the AdS5 dual of the U(N) vector model

built from the complex spin-j doubletons. Again, to compute the one-loop vacuum energy

by the CIRZ method, it is sufficient to identify the underlying character. For the non-

minimal case, it is given by

χj,non-min(β, α1, α2) = χSj
(β, α1, α2)

2 . (4.10)

We begin with the case of vector models built from the the parity invariant singleton. The

expressions for the fj,non-min|n are quite lengthy and are hence omitted here. We directly

write the expressions for the γj,non-min|n defined in (4.4) as

γj,non-min|2 =
2

105
nj

(

72 j4 − 24 j2 + 1
)

,

γj,non-min|1 =
4

315
nj

(

60 j4 − 27 j2 + 2
)

,

γj,non-min|0 =
8

15
nj (j

4 − j2) ,

(4.11)

where nj is an integer given by

nj =
(2 j − 1) 2 j (2 j + 1)

6
. (4.12)

These may in turn be summed up to give

Γ(1) ren

j,non-min =
2

45
nj

(

60 j4 − 30 j2 + 1
)

logR = (−1)2j nj 2Γ
(1) ren

Sj
, (4.13)

where we have used the expression (4.8) in the second step. One can see that the vacuum

energy vanishes for j = 0, 1/2 reproducing the result of type A and B [18]. Further, for

j = 1 we obtain the relation,

Γ(1) ren

j=1,non-min = 2Γ(1) ren

S1
, (4.14)

which reproduces the result of [22].

Let us note that the vacuum energy of the non-minimal theory can be split into the

contribution of symmetric fields in HSym

j,non-min (2.18) and that of the massless and massive

mixed-symmetry fields in HMixSym

j,non-min (2.20) as

Γ(1) ren

j,non-min|Sym = nj
48 j4 − 18 j2 + 1

45
logR , (4.15)

Γ(1) ren

j,non-min|MixSym + Γ(1) ren

j,non-min|Massive = nj
72 j4 − 42 j2 + 1

45
logR . (4.16)
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In principle, we can also consider the case where the boundary theory is given by only

positive (or negative) helicity j, hence S[j,0] (or S[0,j]). Then, the unitarity contrains the

boundary fields to be complex: it can have U(N) symmetry but not O(N). If we apply

the vectorial duality to this chiral model, then the field content of the bulk (non-minimal)

theory would have the spectrum

H[j,0],non-min = S[j,0] ⊗ S[0,j] =
1

2
Hj,non-min|Sym , (4.17)

where S[0,j] is for the complex conjugate of the chiral fields in S[j,0] . Therefore, its vacuum

energy will be given by

Γ(1) ren

[j,0],non-min =
1

2
Γ(1) ren

j,non-min|Sym = nj
48 j4 − 18 j2 + 1

90
logR , (4.18)

In contrast to the parity invariant model, the above vacuum energy is not proportional to

that of S[j,0],

Γ(1) ren

S[j,0]
= (−1)2j

60 j4 − 30 j2 + 1

90
logR , (4.19)

with an integer factor except for the trivial cases of j = 0 and 1
2 where the prefactor nj

itself vanishes.

Minimal type-j theory. We now turn to the minimal type-j theory, which is the puta-

tive dual of the O(N) vector model built from spin-j doubleton. The character of minimal

type-j theory is given by

χj,min(β, α+, α−) =
χSj

(β, α+, α−)
2 + (−1)2j χSj

(2β, 2α+, 2α−)

2
, (4.20)

where Sj is the parity invariant spin-j singleton. The contribution to the vacuum energy

from the first term is the half of the non-minimal theory, already computed in (4.13). We

will work with the second term, χh(β, α+, α−) = (−1)2j 1
2 χSj

(2β, 2α+, 2α−). Also, for

brevity we directly write the expressions for the γh|n’s:

γh|2 =
(−1)2j

960

(

480 j4 − 240 j2 + 13
)

,

γh|1 =
(−1)2j

576

(

192 j4 − 96 j2 + 5
)

,

γh|0 = (−1)2j
2 j4 − j2

4
.

(4.21)

These may in turn be summed to obtain the contribution of this term to the one-loop

vacuum energy,

Γ(1) ren

h = (−1)2j
1

45

(

60 j4 − 30 j2 + 1
)

logR . (4.22)

We observe that this exactly matches with the corresponding answer for Sj . Finally, the

one-loop vacuum energy of the minimal Type-j model may be expressed as

Γ(1) ren

j,min =
1

2
Γ(1) ren

j,non-min + Γ(1) ren

h =
[

(−1)2j nj + 1
]

Γ(1) ren

Sj
. (4.23)
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Compared to the non-minimal theory case (4.13), we find that the relation between the

vacuum energy of type-j theory and that of spin-j doubleton has an additional term ‘+1’.

The latter contribution is responsible a shift of bulk coupling constant proposed in the

lower j cases.

4.2 One-loop Casimir energy in AdS5 with S1
× S3 boundary

When the background is the thermal AdS5 with S1 × S3 boundary, the one-loop partition

function has two contributions,

Γ(1) ren

H (β) = β EH + F̂H(β) , (4.24)

where β is the radius of S1 and the Casimir energy EH is given by a contour integral of the

character,

EH = −(−1)F
1

2

∮

dβ

2π i β2
χH(β, 0, 0) , (4.25)

where F is the fermion number for H . The contour can be taken as a circle around the

origin and the residue theorem can be applied [31]. Thus, EH is given by −1
2 times the

coefficient of the β1 term in the Laurent expansion of χH(β) at β = 0 .

As we mentioned in Introduction, the boundary S1 × S3 is not a compatible space for

massless fields with spin j ≥ 3/2 as the latter can be defined only in a conformally flat

and Einstein background [32, 33], whereas S1 × S3 is not Einstein. Nevertheless, one can

consider the field content of type-j theory in the thermal AdS5 and calculate its Casimir

energy. Even though we expect the type-j holography in thermal AdS to be inconsistent,

we present the calculation of its Casimir energy for completeness. Indeed, one can see that

the result shows an important difference from the S4 boundary case. This calculation has

been already presented in [28] (while the present work has been almost completed), and

various problematic features of the theory are discussed. For completeness, we reproduce

the result here.

For the computation of the Casimir energy, it is again sufficient to know the (blind)

character of the system, which is nothing but the α1 = α2 = 0 case of the character (2.8)

and given by

χSj
(β, 0, 0) = e−j β 2 j (coshβ − 1) + sinhβ

(coshβ − 1)2
. (4.26)

From the above, it is sufficient to extract its β-linear Laurent coefficient to get the residue.

In this way, we get

ESj
= (−1)2j

30 j4 − 20 j2 + 1

120
. (4.27)

In principle, this can be interpreted as the Casimir energy of a single massless spin-j if we

ignore the fact that the latter is not well-defined around S1 × S3 . We can proceed to the

non-minimal type-j theory, whose character is simply the square of (4.26) as in (4.10):

χj,non-min(β, 0, 0) = e−2j β [2 j (coshβ − 1) + sinhβ]2

(coshβ − 1)4
, (4.28)
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and from its β-linear coefficient, we conclude that

Ej,non-min = nj
288 j4 − 208 j2 − 3

420
. (4.29)

The blind character of the minimal theory is defined as in (4.20), from which one can

extract the Casimir energy as

Ej,min = nj
288 j4 − 208 j2 − 3

840
+ (−1)2j

30 j4 − 20 j2 + 1

120
. (4.30)

We see that apart from the familiar ‘low spin’ cases of j = 0, j = 1
2 [19], and j = 1 [22],

there is no value of j for which the Casimir energy Ej,non-min or Ej,min is an integer times

of ESj
. This is to be contrasted to the results (4.13) and (4.23) in the S4 boundary case.

4.3 Extension to type AZ theory

We consider now a more speculative model where the boundary theory itself is given by an

infinite number of massless higher spin fields. More precisely, we take it as the collection

of free massless spin-j fields with j = 0, 1, 2, . . . ,∞ . This spectrum coincides with that

of non-minimal Vasiliev theory but now it is placed on the boundary (see [65] for related

discussions). The boundary theory carries the reducible representation,

SAZ = S[0,0] ⊕
∞
⊕

j=1

(

S[j,0] ⊕ S[0,j]

)

, (4.31)

and the corresponding character can be obtained by summing the spin-j characters (2.8)

over all integers j as

χSAZ
(β, α1, α2) = χS[0,0]

+
∞
∑

j=1

(

χS[j,0]
+ χS[0,j]

)

(4.32)

=
1 + cosα1 + cosα2 + coshβ

1 + cos(2α1) + cos(2α2) + cosh(2β)− 4 cosα1 cosα2 coshβ
.

Here, one needs to be careful in treating the j = 0 contribution as it is already parity

invariant. The field-theory description is nothing but the collection of Fronsdal fields on

the boundary:

SCFT =

∫

d4x
N
∑

i=1

∞
∑

j=0

φ̄
a1···aj
i Gi a1···aj . (4.33)

Again, we can put these fields either in U(N) or O(N) vector representation. In the latter

case, the Fronsdal fields become real.

As the boundary fields carry a vector representation, all single trace operators are

given as bilinear gauge invariants. Again, the content of the latter operators can be easily

identified by taking tensor products of the representationR carried by the boundary theory.

This operator content corresponds to the field content of the bulk theory, which we shall
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refer to as type AZ theory. When the boundary theory carries U(N) vector representation,

its single trace operator spectrum is given by

HAZ,U(N) = SAZ ⊗ SAZ . (4.34)

Since each SAZ contains all spins, its product contains all possible products [22, 66] :

S[j,0] ⊗ S[j′,0] =

j+j′−1
⊕

k=|j−j′|

D(j + j′ + 2, [k, 0])⊕
∞
⊕

k=0

D
(

j + j′ + 2 + k;

[

j + j′ +
k

2
,
k

2

])

,

S[j,0] ⊗ S[0,j′] =
∞
⊕

k=0

D
(

j + j′ + 2 + k;

[

j +
k

2
, j′ +

k

2

])

. (4.35)

Here, we again split the spectrum of HAZ,U(N) into three parts:

HAZ,U(N) = HSym

AZ,U(N) ⊕HMixSym

AZ,U(N) ⊕HMassive

AZ,U(N) . (4.36)

The first part contains symmetric conserved currents,

HSym

AZ,U(N) =
∞
⊕

s=0

(2[s/2] + 1)D
(

s+ 2,
[s

2
,
s

2

])

, (4.37)

which are dual to massless symmetric fields in AdS5. One can see that there are growing

number of fields as the spin increases. The second and third parts contain the mixed-

symmetry conserved currents dual to massless mixed symmetry fields and the long opera-

tors dual to non-gauge two-row fields, respectively. The precise multiplicities of these fields

in the type AZ theory can be identified from (4.35). One can obtain analogously the single-

trace operator content for O(N) model which is dual to minimal type AZ theory in the bulk.

We now turn to computing the one-loop vacuum energy of type AZ theory in AdS5.

Following the CIRZ method, it is sufficient to identify the underlying character of the

theory. In the case of the non-minimal theory, dual to the U(N) vector model, the character

is given by

χAZ,non-min(β, α1, α2) = [χSAZ
(β, α1, α2)]

2 . (4.38)

The next step is to calculate fAZ,non-min|n using (4.5). Explicit expressions encountered in

the derivation are fairly lengthy, but the final form taken by these quantities is compact,

and given by

fAZ,non-min|2(β) =
1

128
(coshβ + 3)2 csch4

β

2
,

fAZ,non-min|1(β) =
1

768
(coshβ + 3)(64 coshβ + cosh(2β) + 79) csch6

β

2
,

fAZ,non-min|0(β) =
1

64
(115 coshβ + 21 cosh(2β) + cosh(3β) + 103) csch8

β

2
.

(4.39)

Then by series expanding about β = 0 and extracting the appropriate Laurent coefficients,

we find that the coefficients γnon-min|n (4.3) all vanish:

γAZ,non-min|2 = γAZ,non-min|1 = γAZ,non-min|0 = 0 . (4.40)
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Therefore, the full one-loop vacuum energy of non-minimal type AZ theory vanishes:

Γ(1) ren

AZ,non-min = 0 . (4.41)

If we decompose the above full vacuum energy into the contributions from symmetric and

massless and massive mixed-symmetry fields as (4.36), each one-loop vacuum energy does

not vanish:

Γ(1) ren

AZ,non-min|Sym =
1033

90720
logR , Γ(1) ren

AZ,non-min|MixSym + Γ(1) ren

AZ,non-min|Massive = − 1033

90720
logR ,

(4.42)

but they cancel each other to give (4.41).

One can repeat the computation for the minimal theory, dual to O(N) vector model,

by using the character,

χAZ,min(β, α1, α2) =
[χSAZ

(β, α1, α2)]
2 + χSAZ

(2β, 2α1, 2α2)

2
. (4.43)

After straightfoward calculations, we find again that all the γAZ,min|n coefficients vanish,

hence so does the full one-loop vacuum of minimal type AZ theory:

γAZ,min|2 = γAZ,min|1 = γAZ,min|0 = 0 , Γ(1) ren

AZ,min = 0 . (4.44)

In fact, there is a simple reason for that all these γH|n coefficients vanish (hence the vacuum

energy). It is because the underlying character χSAZ
is even in β :

χSAZ
(−β, α1, α2) = χSAZ

(β, α1, α2) . (4.45)

This property is preserved in making the characters for non-minimal (4.38) and mini-

mal (4.43) theories. Moreover, if the character is invariant in β ↔ −β, then the corre-

sponding fH|n(β)’s are even in β . Since γH|n correspond to Laurent coefficients of odd β

powers, they simply vanish for any even function fH|n(β), hence as a result, the one-loop

vacuum energy vanishes.

A priori, the collection of all massless integer spins cannot be better defined on S1×S3

than its individual spin part. Nevertheless, we can compute the Casimir energy of type

AZ theory by placing its field content in the thermal AdS5 . The computation of Casimier

energy requires only the blind character, which has again very simple form,

χSAZ
(β, 0, 0) =

1

8
(coshβ + 3) csch4

β

2
. (4.46)

Like the full character itself, the above blind character is even in β and this property

guarantees that Casimir energies for boundary theory, and non-minimal and minimal bulk

theories are zero:

ESAZ
= 0 , EAZ,non-min = 0 , EAZ,min = 0 . (4.47)

It is not clear though whether this result suggests that the type AZ theory has any better

chance to be well-defined in the thermal AdS5 .
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5 Discussion

Let us recapitulate the type-j one-loop results we obtained in this paper. The AdS5 vacuum

energies are

Γ(1) ren

j,non-min = (−1)2j nj 2Γ
(1) ren

Sj
, Γ(1) ren

j,min =
[

(−1)2j nj + 1
]

Γ(1) ren

Sj
, (5.1)

where nj is an integer and Γ(1) ren

Sj
is the vacuum energy of spin-j doubleton treated as if it

is a AdS5 field:

nj =
(2 j − 1) 2 j (2 j + 1)

6
, Γ(1) ren

Sj
= (−1)2j

60 j4 − 30 j2 + 1

45
logR . (5.2)

Let us first emphasize that it is a non-trivial fact that the one-loop result of the bulk

theory is related to that of doubleton in this special fashion: this does not happen neither

in (anti-)chiral model case nor in the Casimir energy computations. In the type A, B, C

models with j = 0, 12 , 1 , the vacuum energy Γ(1) ren

Sj
,

(

Γ(1) ren

S0
, Γ(1) ren

S 1
2

, Γ(1) ren

S1

)

=

(

1

90
,
11

180
,
31

45

)

logR , (5.3)

happens to be related to the free energy of the boundary theory on S4 (with N = 1),

(

F0 , F 1
2
, F1

)

=

(

1

90
,
11

180
,
31

45

)

log ΛCFT , (5.4)

which are proportional to the a-anomaly coefficients. This result, upon the IR/UV identi-

fication, logR = log ΛCFT , suggests that the inverse coupling constant of the bulk theory

be related to N with a certain integer shift:

g−1
non-min = N − (−1)2j nj , g−1

min = N − (−1)2j nj − 1

[

j = 0,
1

2
, 1

]

, (5.5)

with nj as defined in (5.2). Now the question is whether the vacuum energy Γ(1) ren

Sj
can be

analogously related to the S4 free energy Fj of massless spin-j for higher values of j . If

so, we would expect the the dictionary (5.5) to continue to hold for these theories as well.

In the following, we examine this possibility.

Let us now turn to the free energy of massless integer spin j field over S4 of unit radius.

It is given by

Fj =
1

2

[

log det
(

−�−
(

j2 − 2j − 2
))

(j)
− log det

(

−�−
(

j2 − 1
))

(j−1)

]

, (5.6)

where −� is the Laplace operator on S4 with positive definite eigenvalues and the sub-

script (j) denotes that the operator acts on a rank j symmetric transverse traceless (STT)

tensor. The multiplicities dn(j) and the eigenvalues of the kinetic operators are given by

λn(∆, j) [67]:

dn(j) = dim(n+ j, j) =
1

6
(2j + 1) (n+ 1) (2j + 2 + n) (2j + 3 + 2n) ,

λn(∆, j) = (n+ j +∆)(n+ j + 3−∆) , n ≥ 0. (5.7)
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Focussing on the logarithmically divergent part, the S4 free energy is given by

Fj = − (ζj+1,j(0)− ζj+2,j−1(0)− ηj) log ΛCFT , (5.8)

where ηj is the contribution due to zero modes and the zeta function ζ∆,j for an irreducible

field labeled by (∆, j), is given by

ζ∆,j(z) =
∑

n=0

dn(j)λn(∆, j)−z , (5.9)

Here, we are interested only in the logarithmically divergent part of Fj , so we need to

idenify ζj+1,j(0)− ζj+2,j−1(0) and ηj . The former can be readily obtained as

ζj+1,j(0)− ζj+2,j−1(0) =
15 j2 − 1

45
. (5.10)

Therefore, if the zero-mode contribution ηj is the desired quantity ηdesired
j :

ηdesired
j =

j2 (4 j2 − 1)

3
= j nj , (5.11)

then the free energy Fj would coincide with Γ(1) ren

Sj
, and the dictionary (5.5) would make a

sense for any j .

In section 2 of [68], Tseytlin analyzed the zero modes for massless spin-j : they arise

when we decompose a traceless rank-j tensor φT

(j) into the traceless and transverse part

φTT

(j) and the rest:

φT
µ1···µj

= φTT
µ1···µj

+Π
[

∇(µ1
ξT

µ2···µj)

]

. (5.12)

The rest is the traceless part (Π is the traceless projector) of gradient of a traceless tensor

ξT

(j−1) . In order that this decomposition is one-to-one, ξT

(j−1) should not involve the so-

lutions of Π[∇ ξT

(j−1) ] = 0 , namely zero modes. These precisely correspond to the spin-j

conformal Killing tensors, whose number is j2(j +1)2(2j +1)/12 . In the analysis of mass-

less spin-j, we face this decomposition twice, once for the rank-j physical mode and the

other time for the rank-(j − 1) gauge mode. Hence, according to [68], the total zero-mode

contribution is

ηTseytlin

j =
j2 (j + 1)2 (2j + 1)

12
− (j − 1)2 j2 (2j − 1)

12
=

5 j4 + j2

6
, (5.13)

and consequently, the free energy with the zero-mode contribution (5.13),

Fj =
75j4 − 15j2 + 2

90
log ΛCFT , (5.14)

differs from the vacuum energy Γ(1) ren

Sj
(5.2). Let us make one curious observation: if we

neglect the γH|0 term (4.7) — which is non-vanishing only for two-row Young diagram

tensors — in the Γ(1) ren

Sj
computation, we would get the result (5.14).

Differently from the renormalized quantity, the logarithmically divergent part of free

energy may depend on field-theoretical realizations [69]. Therefore, in principle, there
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might be other formulation of massless spin-j than the Fronsdal one with the free energy

given by Γ(1) ren

Sj
. For instance, if one considers the Maxwell-like formulation [70–72] where

the gauge field is traceless and the gauge parameter is traceless and traceverse, we need to

consider the decomposition,

φT
µ1···µj

= φTT
µ1···µj

+∇(µ1
ξTT

µ2···µj)
, (5.15)

only once, hence the zero modes only appear here. They are the solutions of ∇ ξTT

(j−1) = 0 ,

namely spin-j Killing tensors. These also coincide with the zero modes of the gauge sector

(∆ = j + 2, s = j − 1) in (5.7) and they correspond to n = 0 modes with the multiplicity,

d0(j − 1) =
j (4 j2 − 1)

3
= nj . (5.16)

Still this number is not sufficient to give the desired contribution (5.11), but misses a factor

of j . Hopefully, there may be yet another formulation of massless spin-j field which gives

the desired zero modes.

As a final note, we also point out that the above zero mode analysis may be affected

by their non-trivial scalings, which have been pointed out in [73–78]. In the appendix, we

discuss how the inclusion of such scalings may alter possibly the results of one-loop free

energy computations on S4 so as to match the result with Γ(1) ren

Sj
.
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A Free energy of Fronsdal fields on S4

We begin with a discussion of a generality that has been reviewed many times in the context

of computing quantum corrections in AdS spaces [73–80]. Given the one-loop determinant

of a theory, for definiteness taken to be in four dimensions, we have

Z1−ℓ =

∫

[Dφ] e−
∫
d4xφO φ =

(

det′O
)−1/2 ×Zzero, (A.1)

where by det′ we mean the determinant evaluated over the non-zero modes of O and Zzero

is the path integral over the zero modes of O. Next, we assume that the theory is defined

on a manifold with a length scale a and we are computing the part of the free energy

lnZ1−loop proportional to ln a. It was observed in [73, 74] that the zero mode associated

with a given field φ in the spectrum of the theory may scale with a differently compared
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to the non zero modes. In particular, suppose that the contribution of a single zero mode

of the field φ scales as

Zzero ∼ aβφZo, (A.2)

where Zo does not scale with a. Then if the field φ has nφ number of zero modes then

F = − lnZ1−ℓ = −
(

ζ̃ (0) + nφ βφ

)

ln a+ . . . , (A.3)

where . . . denote terms that are not proportional to ln a, and ζ̃ is the zeta function evaluated

over the non-zero modes of the field φ. In practice, it is often easier to compute the zeta

function over all possible modes, denoted by ζ including zero modes, and use the equivalent

expression5 [73, 74]

F = − lnZ1−ℓ = − (ζ (0) + nφ (βφ − 1)) ln a+ . . . . (A.4)

Note that generically, βφ is not equal to one. We refer the reader to [74, 76, 78] for explicit

examples in various dimensions.

The eigenvalues and degeneracies of the kinetic operators in (5.6) have been enumerated

in (5.7). Using those expressions we see that for the expression (5.6) it is the ghost determi-

nant acting over spin j−1 STT tensors which has a zero eigenvalue for the lowest quantum

number n = 0. The number of such zero modes is given (5.16). Physically, since the zero

modes belong to the ghost path integral, they should be interpreted as the part of the gauge

symmetry δφ(j) = ∇ ξ(j−1) that remains even after fixing gauge [78, 81]. Next, we turn to

the computation of the free energy from the one-loop determinants (5.6) and get (5.8) with

ηj = nj (βj − 1) , (A.5)

where nj is exhibited in (5.16). We now turn to the computation of βj following the anal-

ysis of [73–78, 82] who worked in Anti-de Sitter space. We start with the normalization

for the path integral for the ghost determinant for a spin-j Fronsdal field on S4, i.e.

∫

[

Dξµ2...µj

]

exp

[

−
∫

d4x
√
g gµ2ν2 . . . gµjνj ξµ2...µj

ξν2...νj

]

= 1. (A.6)

Next, if the radius of the S4 is a then the metric g scales as gµν = a2 g
(0)
µν . As a result, the

normalization becomes
∫

[

Dξµ2...µj

]

exp

[

−a4−2(j−1)

∫

d4x

√

g(0) g(0)µ2ν2 . . . g(0)µjνj ξµ2...µj
ξν2...νj

]

= 1. (A.7)

Hence the correctly normalized integration measure is given by

[

Dξµ2...µj

]

=
∏

x,(µ1...µj)

d
(

a3−jξµ2...µj

)

. (A.8)

As we commented above, the zero modes of the ghost operator are associated with gauge

transformations of the Fronsdal field δφµ1...µj
= ∇(µ1

ξµ2...µj), and in particular are some

5In particular, ζ̃ (0) = ζ (0)− nφ.
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specific rank j − 1 STT tensors. It now remains to determine the scaling of the fields

ξµ2...µj
. The procedure is to determine the tensorial properties of the field ξ which generate

an a-independent symmetry algebra, and take those tensors to scale as a0. Then, by using

the metric gµν we may infer the scaling of ξµ2...µj
. For this we use the fact that these are

linearized transformations of a non-linear symmetry algebra which contains the isometry of

S4 as a subalgebra, and that the a-independent S4-isometry is generated by the ξµ. Hence,

for the higher-spin algebra to be independent of a, we must generate it by ξµ2...µj , which we

therefore take to scale as a0. Then it follows that ξµ2...µj
scales as a2(j−1). Therefore, the

scaling of each zero mode is given by a2(j−1)×a3−j = aj+1. That is, over a single zero mode

Zzero ∼ aj+1Zo. (A.9)

We therefore see, on comparing with (A.2) that

βj = j + 1. (A.10)

Plugging the above in (A.5), we get the desired zero mode contribution (5.11).

However we add a word of caution, though hyperboloids and spheres share many

common features there are also potential subtle differences for example in the zero mode

spectrum. For these reasons, the computations in this appendix might be regarded as

encouraging, but still preliminary and are currently under further exploration in a related

context [83].
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