16 research outputs found

    Analyses of In Vivo Interaction and Mobility of Two Spliceosomal Proteins Using FRAP and BiFC

    Get PDF
    U1-70K, a U1 snRNP-specific protein, and serine/arginine-rich (SR) proteins are components of the spliceosome and play critical roles in both constitutive and alternative pre-mRNA splicing. However, the mobility properties of U1-70K, its in vivo interaction with SR proteins, and the mobility of the U1-70K-SR protein complex have not been studied in any system. Here, we studied the in vivo interaction of U1-70K with an SR protein (SR45) and the mobility of the U1-70K/SR protein complex using bimolecular fluorescence complementation (BiFC) and fluorescence recovery after photobleaching (FRAP). Our results show that U1-70K exchanges between speckles and the nucleoplasmic pool very rapidly and that this exchange is sensitive to ongoing transcription and phosphorylation. BiFC analyses showed that U1-70K and SR45 interacted primarily in speckles and that this interaction is mediated by the RS1 or RS2 domain of SR45. FRAP analyses showed considerably slower recovery of the SR45/U1-70K complex than either protein alone indicating that SR45/U1-70K complexes remain in the speckles for a longer duration. Furthermore, FRAP analyses with SR45/U1-70K complex in the presence of inhibitors of phosphorylation did not reveal any significant change compared to control cells, suggesting that the mobility of the complex is not affected by the status of protein phosphorylation. These results indicate that U1-70K, like SR splicing factors, moves rapidly in the nucleus ensuring its availability at various sites of splicing. Furthermore, although it appears that U1-70K moves by diffusion its mobility is regulated by phosphorylation and transcription

    Different Transcript Patterns in Response to Specialist and Generalist Herbivores in the Wild Arabidopsis Relative Boechera divaricarpa

    Get PDF
    BACKGROUND: Plants defend themselves against herbivorous insects, utilizing both constitutive and inducible defenses. Induced defenses are controlled by several phytohormone-mediated signaling pathways. Here, we analyze transcriptional changes in the North American Arabidopsis relative Boechera divaricarpa in response to larval herbivory by the crucifer specialist lepidopteran Plutella xylostella (diamondback moth) and by the generalist lepidopteran Trichoplusia ni (cabbage semilooper), and compare them to wounding and exogenous phytohormone application. METHODOLOGY/PRINCIPAL FINDINGS: We use a custom macroarray constructed from B. divaricarpa herbivory-regulated cDNAs identified by suppression subtractive hybridization and from known stress-responsive A. thaliana genes for transcript profiling after insect herbivory, wounding and in response to jasmonate, salicylate and ethylene. In addition, we introduce path analysis as a novel approach to analyze transcript profiles. Path analyses reveal that transcriptional responses to the crucifer specialist P. xylostella are primarily determined by direct effects of the ethylene and salicylate pathways, whereas responses to the generalist T. ni are influenced by the ethylene and jasmonate pathways. Wound-induced transcriptional changes are influenced by all three pathways, with jasmonate having the strongest effect. CONCLUSIONS/SIGNIFICANCE: Our results show that insect herbivory is distinct from simple mechanical plant damage, and that different lepidopteran herbivores elicit different transcriptional responses

    Evolutionary history of the OmpR/IIIA family of signal transduction two component systems in Lactobacillaceae and Leuconostocaceae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two component systems (TCS) are signal transduction pathways which typically consist of a sensor histidine kinase (HK) and a response regulator (RR). In this study, we have analyzed the evolution of TCS of the OmpR/IIIA family in <it>Lactobacillaceae </it>and <it>Leuconostocaceae</it>, two families belonging to the group of lactic acid bacteria (LAB). LAB colonize nutrient-rich environments such as foodstuffs, plant materials and the gastrointestinal tract of animals thus driving the study of this group of both basic and applied interest.</p> <p>Results</p> <p>The genomes of 19 strains belonging to 16 different species have been analyzed. The number of TCS encoded by the strains considered in this study varied between 4 in <it>Lactobacillus helveticus </it>and 17 in <it>Lactobacillus casei</it>. The OmpR/IIIA family was the most prevalent in <it>Lactobacillaceae </it>accounting for 71% of the TCS present in this group. The phylogenetic analysis shows that no new TCS of this family has recently evolved in these <it>Lactobacillaceae </it>by either lineage-specific gene expansion or domain shuffling. Furthermore, no clear evidence of non-orthologous replacements of either RR or HK partners has been obtained, thus indicating that coevolution of cognate RR and HKs has been prevalent in <it>Lactobacillaceae</it>.</p> <p>Conclusions</p> <p>The results obtained suggest that vertical inheritance of TCS present in the last common ancestor and lineage-specific gene losses appear as the main evolutionary forces involved in their evolution in <it>Lactobacillaceae</it>, although some HGT events cannot be ruled out. This would agree with the genomic analyses of <it>Lactobacillales </it>which show that gene losses have been a major trend in the evolution of this group.</p

    Estimated hepatitis C prevalence and key population sizes in San Francisco: A foundation for elimination

    No full text
    <div><p>Background</p><p>Initiated in 2016, <i>End Hep C SF</i> is a comprehensive initiative to eliminate hepatitis C (HCV) infection in San Francisco. The introduction of direct-acting antivirals to treat and cure HCV provides an opportunity for elimination. To properly measure progress, an estimate of baseline HCV prevalence, and of the number of people in various subpopulations with active HCV infection, is required to target and measure the impact of interventions. Our analysis was designed to incorporate multiple relevant data sources and estimate HCV burden for the San Francisco population as a whole, including specific key populations at higher risk of infection.</p><p>Methods</p><p>Our estimates are based on triangulation of data found in case registries, medical records, observational studies, and published literature from 2010 through 2017. We examined subpopulations based on sex, age and/or HCV risk group. When multiple sources of data were available for subpopulation estimates, we calculated a weighted average using inverse variance weighting. Credible ranges (CRs) were derived from 95% confidence intervals of population size and prevalence estimates.</p><p>Results</p><p>We estimate that 21,758 residents of San Francisco are HCV seropositive (CR: 10,274–42,067), representing an overall seroprevalence of 2.5% (CR: 1.2%– 4.9%). Of these, 16,408 are estimated to be viremic (CR: 6,505–37,407), though this estimate includes treated cases; up to 12,257 of these (CR: 2,354–33,256) are people who are untreated and infectious. People who injected drugs in the last year represent 67.9% of viremic HCV infections.</p><p>Conclusions</p><p>We estimated approximately 7,400 (51%) more HCV seropositive cases than are included in San Francisco’s HCV surveillance case registry. Our estimate provides a useful baseline against which the impact of <i>End Hep C SF</i> can be measured.</p></div
    corecore