723 research outputs found

    A compact spectroradiometer for solar simulator measurements

    Get PDF
    Compact spectral irradiance probe has been designed and built which uses wedge filter in conjunction with silicon cell and operational amplifier. Probe is used to monitor spectral energy distribution of solar simulators and other high intensity sources

    The Quantasyn, an improved quantum detector

    Get PDF
    Quantasyn provides absolute measurement of radiation flux in the range 1000 A to 4500 A and into the vacuum ultraviolet. This radiation detector cimbines the high quantum efficiency and inherent linearity of the silicon solar cell with the constant quantum response of the fluorescent organic compound liumogen

    Compact spectroradiometer

    Get PDF
    Development and characteristics of spectroradiometer with wedge filters to eliminate adverse effect of pinholes in filter

    Chandra view of Kes 79: a nearly isothermal SNR with rich spatial structure

    Full text link
    A 30 ks \chandra ACIS-I observation of Kes 79 reveals rich spatial structures, including many filaments, three partial shells, a loop and a ``protrusion''. Most of them have corresponding radio features. Regardless of the different results from two non-equilibrium ionization (NEI) codes, temperatures of different parts of the remnant are all around 0.7 keV, which is surprisingly constant for a remnant with such rich structure. If thermal conduction is responsible for smoothing the temperature gradient, a lower limit on the thermal conductivity of \sim 1/10 of the Spitzer value can be derived. Thus, thermal conduction may play an important role in the evolution of at least some SNRs. No spectral signature of the ejecta is found, which suggests the ejecta material has been well mixed with the ambient medium. From the morphology and the spectral properties, we suggest the bright inner shell is a wind-driven shell (WDS) overtaken by the blast wave (the outer shell) and estimate the age of the remnant to be \sim 6 kyr for the assumed dynamics. Projection is also required to explain the complicated morphology of Kes 79.Comment: 12 pages, 6 figures (3 in color), ApJ, in press, April 20, 200

    X-Ray Light Curves of Gamma-ray Bursts Detected with the All-Sky Monitor on RXTE

    Full text link
    We present X-ray light curves (1.5-12 keV) for fifteen gamma-ray bursts (GRBs) detected by the All-Sky Monitor on the Rossi X-ray Timing Explorer. We compare these soft X-ray light curves with count rate histories obtained by the high-energy (>12 keV) experiments BATSE, Konus-Wind, the BeppoSAX Gamma-Ray Burst Monitor, and the burst monitor on Ulysses. We discuss these light curves within the context of a simple relativistic fireball and synchrotron shock paradigm, and we address the possibility of having observed the transition between a GRB and its afterglow. The light curves show diverse morphologies, with striking differences between energy bands. In several bursts, intervals of significant emission are evident in the ASM energy range with little or no corresponding emission apparent in the high-energy light curves. For example, the final peak of GRB 970815 as recorded by the ASM is only detected in the softest BATSE energy bands. We also study the duration of bursts as a function of energy. Simple, singly-peaked bursts seem consistent with the E^{-0.5} power law expected from an origin in synchrotron radiation, but durations of bursts that exhibit complex temporal structure are not consistent with this prediction. Bursts such as GRB 970828 that show many short spikes of emission at high energies last significantly longer at low energies than the synchrotron cooling law would predict.Comment: 15 pages with 20 figures and 2 tables. In emulateapj format. Accepted by ApJ

    Supernova Remnants in the Magellanic Clouds. V. The Complex Interior Structure of the N206 SNR

    Full text link
    The N206 supernova remnant (SNR) in the Large Magellanic Cloud (LMC) has long been considered a prototypical "mixed morphology" SNR. Recent observations, however, have added a new twist to this familiar plot: an elongated, radially-oriented radio feature seen in projection against the SNR face. Utilizing the high resolution and sensitivity available with the Hubble Space Telescope, Chandra, and XMM-Newton, we have obtained optical emission-line images and spatially resolved X-ray spectral maps for this intriguing SNR. Our findings present the SNR itself as a remnant in the mid to late stages of its evolution. X-ray emission associated with the radio "linear feature" strongly suggests it to be a pulsar-wind nebula (PWN). A small X-ray knot is discovered at the outer tip of this feature. The feature's elongated morphology and the surrounding wedge-shaped X-ray enhancement strongly suggest a bow-shock PWN structure.Comment: 41 pages including 7 figures, accepted for publication by the Astrophysical Journa

    Practical free-space quantum key distribution over 1 km

    Full text link
    A working free-space quantum key distribution (QKD) system has been developed and tested over an outdoor optical path of ~1 km at Los Alamos National Laboratory under nighttime conditions. Results show that QKD can provide secure real-time key distribution between parties who have a need to communicate secretly. Finally, we examine the feasibility of surface to satellite QKD.Comment: 5 pages, 2 figures, 2 tables. Submitted to Physics Review Letters, May 199

    X-ray Spectroscopy of Candidate Ultracompact X-ray Binaries

    Full text link
    We present high-resolution spectroscopy of the neutron star/low-mass X-ray binaries (LMXBs) 4U 1850-087 and 4U 0513-40 as part of our continuing study of known and candidate ultracompact binaries. The LMXB 4U 1850-087 is one of four systems in which we had previously inferred an unusual Ne/O ratio in the absorption along the line of sight, most likely from material local to the binaries. However, our recent Chandra X-ray Observatory LETGS spectrum of 4U 1850-087 finds a Ne/O ratio by number of 0.22+/-0.05, smaller than previously measured and consistent with the expected interstellar value. We propose that variations in the Ne/O ratio due to source variability, as previously observed in these sources, can explain the difference between the low- and high-resolution spectral results for 4U 1850-087. Our XMM-Newton RGS observation of 4U 0513-40 also shows no unusual abundance ratios in the absorption along the line of sight. We also present spectral results from a third candidate ultracompact binary, 4U 1822-000, whose spectrum is well fit by an absorbed power-law + blackbody model with absorption consistent with the expected interstellar value. Finally, we present the non-detection of a fourth candidate ultracompact binary, 4U 1905+000, with an upper limit on the source luminosity of < 1 x 10^{32} erg s^{-1}. Using archival data, we show that the source has entered an extended quiescent state.Comment: 8 pages, 3 figures, accepted for publication to the Astrophysical Journa

    The first orbital solution for the massive colliding-wind binary HD93162 (=WR25)

    Get PDF
    Since the discovery, with the EINSTEIN satellite, of strong X-ray emission associated with HD93162 (=WR25), this object has been predicted to be a colliding-wind binary system. However, radial-velocity variations that would prove the suspected binary nature have yet to be found. We spectroscopically monitored this object to investigate its possible variability to address this discordance. We compiled the largest available radial-velocity data set for this star to look for variations that might be due to binary motion. We derived radial velocities from spectroscopic data acquired mainly between 1994 and 2006, and searched these radial velocities for periodicities using different numerical methods. For the first time, periodic radial-velocity variations are detected. Our analysis definitively shows that the Wolf-Rayet star WR25 is an eccentric binary system with a probable period of about 208 days.Comment: 7 pages, 4 figures, accepted by A+

    Discovery of luminous pulsed hard X-ray emission from anomalous X-ray pulsars 1RXS J1708-4009, 4U 0142+61 and 1E 2259+586 by INTEGRAL and RXTE

    Full text link
    We report on the discovery of hard spectral tails for energies above 10 keV in the total and pulsed spectra of anomalous X-ray pulsars 1RXS J1708-4009, 4U 0142+61 and 1E 2259+586 using RXTE PCA (2-60 keV) and HEXTE (15-250 keV) data and INTEGRAL IBIS ISGRI (20-300 keV) data. Improved spectral information on 1E 1841-045 is presented. The pulsed and total spectra measured above 10 keV have power-law shapes and there is so far no significant evidence for spectral breaks or bends up to ~150 keV. The pulsed spectra are exceptionally hard with indices measured for 4 AXPs approximately in the range -1.0 -- 1.0. We also reanalyzed archival CGRO COMPTEL (0.75-30 MeV) data to search for signatures from our set of AXPs. No detections can be claimed, but the obtained upper-limits in the MeV band indicate that for 1RXS J1708-4009, 4U 0142+61 and 1E 1841-045 strong breaks must occur somewhere between 150 and 750 keV.Comment: Accepted for publication in ApJ; 19 pages; 4 Tables; 15 Figures (6 color
    corecore