313 research outputs found

    Qualitative and quantitative analysis of stability and instability dynamics of positive lattice solitons

    Full text link
    We present a unified approach for qualitative and quantitative analysis of stability and instability dynamics of positive bright solitons in multi-dimensional focusing nonlinear media with a potential (lattice), which can be periodic, periodic with defects, quasiperiodic, single waveguide, etc. We show that when the soliton is unstable, the type of instability dynamic that develops depends on which of two stability conditions is violated. Specifically, violation of the slope condition leads to an amplitude instability, whereas violation of the spectral condition leads to a drift instability. We also present a quantitative approach that allows to predict the stability and instability strength

    Chiral Quasicrystalline Order and Dodecahedral Geometry in Exceptional Families of Viruses

    Full text link
    On the example of exceptional families of viruses we i) show the existence of a completely new type of matter organization in nanoparticles, in which the regions with a chiral pentagonal quasicrystalline order of protein positions are arranged in a structure commensurate with the spherical topology and dodecahedral geometry, ii) generalize the classical theory of quasicrystals (QCs) to explain this organization, and iii) establish the relation between local chiral QC order and nonzero curvature of the dodecahedral capsid faces.Comment: 8 pages, 3 figure

    Symmetry of Magnetically Ordered Quasicrystals

    Get PDF
    The notion of magnetic symmetry is reexamined in light of the recent observation of long range magnetic order in icosahedral quasicrystals [Charrier et al., Phys. Rev. Lett. 78, 4637 (1997)]. The relation between the symmetry of a magnetically-ordered (periodic or quasiperiodic) crystal, given in terms of a ``spin space group,'' and its neutron diffraction diagram is established. In doing so, an outline of a symmetry classification scheme for magnetically ordered quasiperiodic crystals is provided. Predictions are given for the expected diffraction patterns of magnetically ordered icosahedral crystals, provided their symmetry is well described by icosahedral spin space groups.Comment: 5 pages. Accepted for publication in Phys. Rev. Letter

    Cultural Diversity Professional Development in Schools Survey

    Get PDF
    This report presents findings from the Metropolitan Educational Research Consortium (MERC) Cultural Diversity Within Schools Survey. This survey was designed for school- based professionals (i.e., teachers, instructional staff, administrators) within the MERC region. Administered in the fall of 2018, the survey collected information about experiences of professional development related to cultural diversity, attitudes toward cultural diversity within schools, perceptions of barriers and opportunities, and perspectives on the need for professional development. Section 1 of the report discusses the context for this survey effort: increased cultural diversity in our schools, increased cultural mismatch between students and teachers, and multicultural education as a promising practice. This is followed in section 2 with information about the survey development and administration process. In section 3, we present the findings from the survey in several subsections that explore group comparisons and results related to the different topics covered in the survey. In section 4, we share recommendations for policy, practice and future scholarship. These recommendations are informed by the relevant literature as well as the results of the survey. The report also includes two appendices: Appendix A presents a full version of the survey, Appendix B provides detailed tables of survey results disaggregated by school division. A third appendix, Appendix C provides technical information about the survey methodology, and is available online

    Local Complexity of Delone Sets and Crystallinity

    Full text link
    This paper characterizes when a Delone set X is an ideal crystal in terms of restrictions on the number of its local patches of a given size or on the hetereogeneity of their distribution. Let N(T) count the number of translation-inequivalent patches of radius T in X and let M(T) be the minimum radius such that every closed ball of radius M(T) contains the center of a patch of every one of these kinds. We show that for each of these functions there is a `gap in the spectrum' of possible growth rates between being bounded and having linear growth, and that having linear growth is equivalent to X being an ideal crystal. Explicitly, for N(T), if R is the covering radius of X then either N(T) is bounded or N(T) >= T/2R for all T>0. The constant 1/2R in this bound is best possible in all dimensions. For M(T), either M(T) is bounded or M(T) >= T/3 for all T>0. Examples show that the constant 1/3 in this bound cannot be replaced by any number exceeding 1/2. We also show that every aperiodic Delone set X has M(T) >= c(n)T for all T>0, for a certain constant c(n) which depends on the dimension n of X and is greater than 1/3 when n > 1.Comment: 26 pages. Uses latexsym and amsfonts package

    Modelling quasicrystals at positive temperature

    Full text link
    We consider a two-dimensional lattice model of equilibrium statistical mechanics, using nearest neighbor interactions based on the matching conditions for an aperiodic set of 16 Wang tiles. This model has uncountably many ground state configurations, all of which are nonperiodic. The question addressed in this paper is whether nonperiodicity persists at low but positive temperature. We present arguments, mostly numerical, that this is indeed the case. In particular, we define an appropriate order parameter, prove that it is identically zero at high temperatures, and show by Monte Carlo simulation that it is nonzero at low temperatures

    Diffusive limits on the Penrose tiling

    Full text link
    In this paper random walks on the Penrose lattice are investigated. Heat kernel estimates and the invariance principle are shown

    Going beyond defining: Preschool educators\u27 use of knowledge in their pedagogical reasoning about vocabulary instruction

    Get PDF
    Previous research investigating both the knowledge of early childhood educators and the support for vocabulary development present in early childhood settings has indicated that both educator knowledge and enacted practice are less than optimal, which has grave implications for children\u27s early vocabulary learning and later reading achievement. Further, the nature of the relationship between educators\u27 knowledge and practice is unclear, making it difficult to discern the best path towards improved knowledge, practice, and children\u27s vocabulary outcomes. The purpose of the present study was to add to the existing literature by using stimulated recall interviews and a grounded approach to examine how 10 preschool educators used their knowledge to made decisions about their moment-to-moment instruction in support of children\u27s vocabulary development. Results indicate that educators were thinking in highly context-specific ways about their goals and strategies for supporting vocabulary learning, taking into account important knowledge of their instructional history with children and of the children themselves to inform their decision making in the moment. In addition, they reported thinking about research-based goals and strategies for supporting vocabulary learning that went beyond simply defining words for children. Implications for research and professional development are discussed

    Isotropic Conductivity of Two-Dimensional Three-Component Symmetric Composites

    Full text link
    The effective dc-conductivity problem of isotropic, two-dimensional (2D), three-component, symmetric, regular composites is considered. A simple cubic equation with one free parameter for σe(σ1,σ2,σ3)\sigma_{e}(\sigma_1,\sigma_2,\sigma_3) is suggested whose solutions automatically have all the exactly known properties of that function. Numerical calculations on four different symmetric, isotropic, 2D, three-component, regular structures show a non-universal behavior of σe(σ1,σ2,σ3)\sigma_{e}(\sigma_1,\sigma_2,\sigma_3) with an essential dependence on micro-structural details, in contrast with the analogous two-component problem. The applicability of the cubic equation to these structures is discussed. An extension of that equation to the description of other types of 2D three-component structures is suggested, including the case of random structures. Pacs: 72.15.Eb, 72.80.Tm, 61.50.AhComment: 8 pages (two columns), 8 figures. J. Phys. A - submitte

    Chiral non-linear sigma-models as models for topological superconductivity

    Full text link
    We study the mechanism of topological superconductivity in a hierarchical chain of chiral non-linear sigma-models (models of current algebra) in one, two, and three spatial dimensions. The models have roots in the 1D Peierls-Frohlich model and illustrate how the 1D Frohlich's ideal conductivity extends to a genuine superconductivity in dimensions higher than one. The mechanism is based on the fact that a point-like topological soliton carries an electric charge. We discuss a flux quantization mechanism and show that it is essentially a generalization of the persistent current phenomenon, known in quantum wires. We also discuss why the superconducting state is stable in the presence of a weak disorder.Comment: 5 pages, revtex, no figure
    • …
    corecore