621 research outputs found
A biologically orientated algorithm for spatial sound segregation
Listening in an acoustically cluttered scene remains a difficult task for both machines and hearing-impaired listeners. Normal-hearing listeners accomplish this task with relative ease by segregating the scene into its constituent sound sources, then selecting and attending to a target source. An assistive listening device that mimics the biological mechanisms underlying this behavior may provide an effective solution for those with difficulty listening in acoustically cluttered environments (e.g., a cocktail party). Here, we present a binaural sound segregation algorithm based on a hierarchical network model of the auditory system. In the algorithm, binaural sound inputs first drive populations of neurons tuned to specific spatial locations and frequencies. The spiking response of neurons in the output layer are then reconstructed into audible waveforms via a novel reconstruction method. We evaluate the performance of the algorithm with a speech-on-speech intelligibility task in normal-hearing listeners. This two-microphone-input algorithm is shown to provide listeners with perceptual benefit similar to that of a 16-microphone acoustic beamformer. These results demonstrate the promise of this biologically inspired algorithm for enhancing selective listening in challenging multi-talker scenes.NIHPublished versio
Confinement, solitons and the equivalence between the sine-Gordon and massive Thirring models
We consider a two-dimensional integrable and conformally invariant field
theory possessing two Dirac spinors and three scalar fields. The interaction
couples bilinear terms in the spinors to exponentials of the scalars. Its
integrability properties are based on the sl(2) affine Kac-Moody algebra, and
it is a simple example of the so-called conformal affine Toda theories coupled
to matter fields. We show, using bosonization techniques, that the classical
equivalence between a U(1) Noether current and the topological current holds
true at the quantum level, and then leads to a bag model like mechanism for the
confinement of the spinor fields inside the solitons. By bosonizing the spinors
we show that the theory decouples into a sine-Gordon model and free scalars. We
construct the two-soliton solutions and show that their interactions lead to
the same time delays as those for the sine-Gordon solitons. The model provides
a good laboratory to test duality ideas in the context of the equivalence
between the sine-Gordon and Thirring theories.Comment: LaTeX, 26 page
A Charged Rotating Black Ring
We construct a supergravity solution describing a charged rotating black ring
with S^2xS^1 horizon in a five dimensional asymptotically flat spacetime. In
the neutral limit the solution is the rotating black ring recently found by
Emparan and Reall. We determine the exact value of the lower bound on J^2/M^3,
where J is the angular momentum and M the mass; the black ring saturating this
bound has maximum entropy for the given mass. The charged black ring is
characterized by mass M, angular momentum J, and electric charge Q, and it also
carries local fundamental string charge. The electric charge distributed
uniformly along the ring helps support the ring against its gravitational
self-attraction, so that J^2/M^3 can be made arbitrarily small while Q/M
remains finite. The charged black ring has an extremal limit in which the
horizon coincides with the singularity.Comment: 25 pages, 1 figur
Synthesis of colloidal 2D/3D MoS2 nanostructures by pulsed laser ablation in an organic liquid environment
Two-dimensional MoS2 nanosheets (2D MoS2 NS) and fullerene-like MoS2 nanostructures (3D MoS2 NS) with varying sizes are synthesized by nanosecond laser ablation of hexagonal crystalline 2H-MoS2 powder in organic solution (methanol). Structural, chemical, and optical properties of MoS2 NS are characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman and UV-vis-near infrared absorption spectroscopy techniques. Results of the structural analysis show that the obtained MoS2 NS mainly present a layered morphology from micrometer to nanometer sized surface area. Detailed analysis of the product also proves the existence of inorganic polyhedral fullerene-like 3D MoS2 NS generated by pulsed laser ablation in methanol. The possible factors which may lead to formation of both 2D and 3D MoS2 NS in methanol are examined by ab initio calculations and shown to correlate with vacancy formation. The hexagonal crystalline structure of MoS2 NS was determined by XRD analysis. In Raman spectroscopy, the peaks at 380.33 and 405.79 cm-1 corresponding to the E1 2g and A1g phonon modes of MoS2 were clearly observed. The colloidal MoS2 NS solution presents broadband absorption edge tailoring from the UV region to the NIR region. Investigations of MoS2 NS show that the one-step physical process of pulsed laser ablation-bulk MoS2 powder interaction in organic solution opens doors to the formation of two scaled micrometer- and nanometer-sized layered and fullerene-like morphology MoS2 structures. © 2014 American Chemical Society
Electrospun nylon 6,6 nanofibers functionalized with cyclodextrins for removal of toluene vapor
Functional nylon 6,6 nanofibers incorporating cyclodextrins (CD) were developed via electrospinning. Enhanced thermal stability of the nylon 6,6/CD nanofibers was observed due to interaction between CD and nylon 6,6. X-ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared spectroscopy studies indicated the existence of some CD molecules on the surface of the nanofibers. Electrospun nylon 6,6 nanofibers without having CD were ineffective for entrapment of toluene vapor from the environment, whereas nylon 6,6/CD nanofibrous membranes can effectively entrap toluene vapor from the surrounding by taking advantage of the high surface-volume ratio of nanofibers with the added advantage of inclusion complexation capability of CD presenting on the nanofiber surface. The modeling studies for formation of inclusion complex between CD and toluene were also performed by using ab initio techniques. Our results suggest that nylon 6,6/CD nanofibrous membranes may have potential to be used as air filters for the removal of organic vapor waste from surroundings. © 2015 Wiley Periodicals, Inc
Rotating Circular Strings, and Infinite Non-Uniqueness of Black Rings
We present new self-gravitating solutions in five dimensions that describe
circular strings, i.e., rings, electrically coupled to a two-form potential (as
e.g., fundamental strings do), or to a dual magnetic one-form. The rings are
prevented from collapsing by rotation, and they create a field analogous to a
dipole, with no net charge measured at infinity. They can have a regular
horizon, and we show that this implies the existence of an infinite number of
black rings, labeled by a continuous parameter, with the same mass and angular
momentum as neutral black rings and black holes. We also discuss the solution
for a rotating loop of fundamental string. We show how more general rings arise
from intersections of branes with a regular horizon (even at extremality),
closely related to the configurations that yield the four-dimensional black
hole with four charges. We reproduce the Bekenstein-Hawking entropy of a large
extremal ring through a microscopic calculation. Finally, we discuss some
qualitative ideas for a microscopic understanding of neutral and dipole black
rings.Comment: 31 pages, 7 figures. v2: minor changes, added reference. v3:
erroneous values of T_{ww} (eq.(3.39)) and n_p (eq.(5.20)) corrected, and
accompanying discussion amended. In the journal version these corrections
appear as an appended erratum. No major changes involve
SD-brane gravity fields and rolling tachyons
S(pacelike)D-branes are objects arising naturally in string theory when
Dirichlet boundary conditions are imposed on the time direction. SD-brane
physics is inherently time-dependent. Previous investigations of gravity fields
of SD-branes have yielded undesirable naked spacelike singularities. We set up
the problem of coupling the most relevant open-string tachyonic mode to
massless closed-string modes in the bulk, with backreaction and Ramond-Ramond
fields included. We find solutions numerically in a self-consistent
approximation; our solutions are naturally asymptotically flat and
time-reversal asymmetric. We find completely nonsingular evolution; in
particular, the dilaton and curvature are well-behaved for all time. The
essential mechanism for spacetime singularity resolution is the inclusion of
full backreaction between the bulk fields and the rolling tachyon. Our analysis
is not the final word on the story, because we have to make some significant
approximations, most notably homogeneity of the tachyon on the unstable branes.
Nonetheless, we provide significant progress in plugging a gaping hole in prior
understanding of the gravity fields of SD-branes.Comment: References added. Analysis for much broader range of solutions
presented. Conclusions unchanged. Time-reversal symmetric examples ruled out,
new examples are provide
Condensing Momentum Modes in 2-d 0A String Theory with Flux
We use a combination of conformal perturbation theory techniques and matrix
model results to study the effects of perturbing by momentum modes two
dimensional type 0A strings with non-vanishing Ramond-Ramond (RR) flux. In the
limit of large RR flux (equivalently, mu=0) we find an explicit analytic form
of the genus zero partition function in terms of the RR flux and the
momentum modes coupling constant alpha. The analyticity of the partition
function enables us to go beyond the perturbative regime and, for alpha>> q,
obtain the partition function in a background corresponding to the momentum
modes condensation. For momenta such that 0<p<2 we find no obstruction to
condensing the momentum modes in the phase diagram of the partition function.Comment: 22 page
Singularity free dilaton-driven cosmologies and pre-little-bang
There are no reasons why the singularity in the growth of the dilaton
coupling should not be regularised, in a string cosmological context, by the
presence of classical inhomogeneities. We discuss a class of inhomogeneous
dilaton-driven models whose curvature invariants are all bounded and regular in
time and space. We prove that the non-space-like geodesics of these models are
all complete in the sense that none of them reaches infinity for a finite value
of the affine parameter. We conclude that our examples represent truly
singularity-free solutions of the low energy beta functions. We discuss some
symmetries of the obtained solutions and we clarify their physical
interpretation. We also give examples of solutions with spherical symmetry. In
our scenario each physical quantity is everywhere defined in time and space,
the big-bang singularity is replaced by a maximal curvature phase where the
dilaton kinetic energy reaches its maximum. The maximal curvature is always
smaller than one (in string units) and the coupling constant is also smaller
than one and it grows between two regimes of constant dilaton, implying,
together with the symmetries of the solutions, that higher genus and higher
curvature corrections are negligible. We argue that our examples describe, in a
string cosmological context, the occurrence of ``little bangs''(i.e. high
curvature phases which never develop physical singularities). They also suggest
the possibility of an unexplored ``pre-little-bang'' phase.Comment: 25 pages in LaTex style, 3 encapsulated figure
Extended tachyon field, Chaplygin gas and solvable k-essence cosmologies
We investigate a flat Friedmann-Robertson-Walker spacetime filled with
k-essence and find the set of functions F which generate three different
families of extended tachyon fields and Chaplygin gases. They lead to
accelerated and superaccelerated expanding scenarios.
For any function F, we find the first integral of the k-field equation when
the k-field is driven by an inverse square potential or by a constant one. In
the former, we obtain the general solution of the coupled Einstein-k-field
equations for a linear function F. This model shares the same kinematics of the
background geometry with the ordinary scalar field one driven by an exponential
potential. However, they are dynamically different. For a constant potential,
we introduce a k-field model that exhibits a transition from a power-law phase
to a de Sitter stage, inducing a modified Chaplygin gas.Comment: 24 pages, revised version accepted for publication in Phys. Rev.
- …