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A biologically oriented
algorithm for spatial sound
segregation
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1Department of Biomedical Engineering, Boston University, Boston, MA, United States, 2Department
of Speech, Language and Hearing Sciences, Boston University, Boston, MA, United States

Listening in an acoustically cluttered scene remains a difficult task for

both machines and hearing-impaired listeners. Normal-hearing listeners

accomplish this task with relative ease by segregating the scene into its

constituent sound sources, then selecting and attending to a target source. An

assistive listening device that mimics the biological mechanisms underlying

this behavior may provide an effective solution for those with difficulty

listening in acoustically cluttered environments (e.g., a cocktail party). Here,

we present a binaural sound segregation algorithm based on a hierarchical

network model of the auditory system. In the algorithm, binaural sound inputs

first drive populations of neurons tuned to specific spatial locations and

frequencies. The spiking response of neurons in the output layer are then

reconstructed into audible waveforms via a novel reconstruction method.

We evaluate the performance of the algorithm with a speech-on-speech

intelligibility task in normal-hearing listeners. This two-microphone-input

algorithm is shown to provide listeners with perceptual benefit similar to that

of a 16-microphone acoustic beamformer. These results demonstrate the

promise of this biologically inspired algorithm for enhancing selective listening

in challenging multi-talker scenes.

KEYWORDS

multitalker speech perception, sound (audio) processing, sound segregation, cocktail
party problem, binaural hearing, spatial listening, hearing loss

Introduction

Attending to a single conversation partner in the presence of multiple distracting
talkers (i.e., the Cocktail Party Problem, CPP) is a complicated and difficult task for
machines and humans (Haykin and Chen, 2005; McDermott, 2009; Qian et al., 2018).
While some listeners can accomplish this task with relative ease, other groups of listeners
report great difficulty—such as those with sensorineural hearing loss (Kochkin, 2000,
2007; Shinn-Cunningham and Best, 2008), cochlear implant users (Bernstein et al.,
2016; Goupell et al., 2016, 2018; Litovsky et al., 2017), subgroups of children (Dhamani
et al., 2013), persons with aphasia (Villard and Kidd, 2019) and adults with “hidden
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hearing loss” (Pichora-Fuller et al., 2017; Shinn-Cunningham,
2017; Parthasarathy et al., 2019). At a cocktail party, talkers are
distributed in space. Listeners use spatial cues (i.e., interaural
timing and level differences, or ITDs and ILDs, respectively)
for sound localization. Additionally, normal-hearing listeners
appear to make use of spatial cues in addition to a variety
of other talker-related cues, to perceptually segregate the
competing talkers and attend to the one of most interest. Indeed,
spatial listening has been shown to provide enormous benefit to
listeners in cocktail-party scenarios (Litovsky, 2012; Rennies and
Kidd, 2018).

Sound processing algorithms can be designed with the
distinct goals of sound localization or spatial sound segregation.
Specifically, spatial processing plays a key role in several
sound segregation algorithms that aim to help hearing-impaired
listeners overcome the CPP. For example, acoustic beamforming
techniques utilize multiple microphones to selectively enhance
signals from a desired direction (Gannot et al., 2017; Chiariotti
et al., 2019), and are often employed in hearing aids (Greenberg
and Zurek, 2001; Chung, 2004; Doclo et al., 2010; Picou et al.,
2014; Launer et al., 2016). Machine learning approaches such
as clustering using Gaussian mixture models (MESSL) (Mandel
et al., 2010) and deep neural networks (DNN) (Wang et al.,
2014), among others, also make use of ITDs and ILDs to localize
the target sound.

The ability of human listeners with normal hearing to solve
the CPP is quite remarkable. Many animals, too, appear to
have robust solutions to their own versions of the CPP (Bee
and Micheyl, 2008). Unlike beamformers, which benefit from
using microphone arrays, humans and animals require only
two inputs—the left and right ear. These listeners are also
able to solve the CPP in novel and unpredictable settings,
a challenge for algorithms that rely on supervised learning
(Bentsen et al., 2018; Wang and Chen, 2018). This raises
the idea that spatially selective algorithms may benefit from
incorporating insights from the human and/or animal brain.
From a practical standpoint, biological processing, which is
based on neural spikes, also has practical advantages that make it
uniquely suited for always-on, portable devices such as hearing
aids. Spike-based processing is computationally efficient and
can be implemented with higher temporal resolution than
algorithms operating on sampled waveforms (Ghosh-Dastidar
and Adeli, 2009), especially when implemented on specialized
neuromorphic hardware (Roy et al., 2019).

We recently proposed a biologically inspired algorithm for
sound processing. The primary goal of this algorithm was to
use spatial cues to perform sound segregation and selection,
not sound localization. In this algorithm, sound mixtures were
segregated by spatially selective model neurons, and selection
was achieved by selective integration via a cortical network
model (Chou et al., 2019). For the tested conditions, which
included a frontal target talker and two symmetrically placed
masker talkers, the algorithm showed segregation performance

similar to MESSL and DNN, and provided proof-of-concept
for a biologically based speech processing algorithm. However,
the algorithm operated in the spiking domain, and employed
a linear decoding algorithm to recover the target speech
(Mesgarani et al., 2009), which resulted in low objective speech
intelligibility. Like many typical beamformers, the algorithm
also did not preserve binaural cues in the output, which can
be particularly problematic in multitalker mixtures (Best et al.,
2017; Wang et al., 2020). These drawbacks limited its practical
use for applications in hearing-assistive devices and machine
hearing.

In this study, we present a new biologically oriented
sound segregation algorithm (BOSSA) that overcomes specific
limitations of our previous algorithm. We introduce a time-
frequency mask estimation method for decoding processed
neural spikes that improves the quality of recovered target
speech compared to the current standard approach (Mesgarani
et al., 2009). We compared the proposed two-channel algorithm
to a 16-microphone super-directional beamformer, using both
objective measures and human psychophysics, and showed
equivalent performance. Our algorithm overcomes some of the
challenges faced by current state-of-the-art technologies, and
provides an alternative, biologically based approach to the CPP.

Algorithm design and
implementation

The proposed BOSSA algorithm contains three modules
(Figure 1) that together generate neural output patterns that
are inputs to the target-reconstruction stage. The first module
resembles peripheral filtering by the cochlea. The second
module performs spatial segregation by constructing model
neurons sensitive to specific spatial cues in narrow frequency
bands. Ensembles of neurons then encode sounds that share the
same spatial cues. In the third module, the spiking activity of
output neurons are decoded into intelligible waveforms using a
novel reconstruction approach. All modules are implemented in
MATLAB (MathWorks, Natick, MA, United States).

Peripheral filtering

Left and right channels of the input audio are filtered with
a gammatone equivalent-rectangular-bandwidth (ERB)
filterbank, implemented using the auditory toolbox in
MATLAB (Slaney, 1998). The bandwidths were calculated

using ERB =
[(

fc/Q
)x
+ bx] 1

x with parameters Q = 9.26449
(Glasberg and Moore, 1990), minimum bandwidth
(b) = 24.7 Hz, order (x) = 1. The filterbank used here has
64 channels with center frequencies ranging from f1 = 200 Hz
to f64 = 20 kHz. The filterbank outputs are two sets of 64
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FIGURE 1

Flow diagram of the proposed algorithm. Central boxes, outlined in gray, show processing for a single-frequency band. The functions uL (t; fk)
and uL (t; fk) are the narrowband signals of the left and right input channels for each frequency channel, and fk denotes the kth frequency
channel. The midbrain model is based on spatially tuned neurons (STNs), where each STN has a “best” ITD and ILD, denoted τ and 1E,
respectively. The best ITD and ILD values of a neuron depend on the direction θ and frequency fk to which the STN is tuned. h (t) represents the
reconstruction kernel that converts spike trains to waveforms. We implemented two masks, FRMask (green line) and DiffMask (red line), either of
which could be used for reconstruction, as indicated by the switch, The implementation of DiffMask in our analysis involves five sets of STNs,
where θ ∈ {0, ± 30, ± 60}; however, other implementations of the model may involve different sets of θ.

channels of narrowband signals, uL
(
t; fk

)
and uR

(
t; fk

)
,

corresponding to the left and right channels, respectively.

Midbrain model

First, binaural cues of input signals are extracted based on a
model of the barn-owl inferior colliculus (Fischer et al., 2009).
ITD was calculated as a short-time running cross correlation
between the energy-normalized uL

(
t; fk

)
and uR

(
t; fk

)
and

ILD as the energy envelope difference between uL
(
t; fk

)
and

uR
(
t; fk

)
. Gain modulation steps matching those used in Fischer

et al. (2009) were applied to the filterbank outputs such that
the inputs to the cross correlation calculation, (uL

(
t; fk

)
and

uR
(
t; fk

)
), varied as a linear function of stimulus level. Further

gain control applied during the cross correlation calculation
in conjunction with a logarithmic energy envelope calculation
resulted in an approximately stimulus level invariant ILD
representation. For a detailed description of the mathematical
operations and their physiological basis, we refer interested
readers to Fischer et al. (2009).

We then constructed sets of spatially tuned neurons (STNs),
where each set consists of 64 neurons tuned to fk of the
previous module. The 64 neurons in each set are sensitive to
the same specific direction θ in the horizontal plane (STNθ,
Figure 1), and each neuron has specific parameters τ

(
θ; fk

)
and 1E

(
θ, fk

)
, corresponding to the ITD and ILD for that

specific θ. Each neuron’s preferred time-lag τ was calculated
using the Woodworth formulation (Woodworth, 1938), with
the approximation that ITDs are independent of frequency.
Preliminary studies found that using frequency-dependent ITD

values, calculated as described by Fischer et al. (2009) or the
ones described by Aaronson and Hartmann (2014), provided no
benefit in terms of objective measures of algorithm performance.
On the other hand, 1E is frequency-dependent, and was derived
by calculating the ILD of a narrow band noise placed at various
azimuths. Directionality of the narrow band noise was imparted
by convolving with Head Related Transfer Functions (HRTFs)
of the Knowles Electronic Manikin for Acoustic Research
(KEMAR) (Burkhard and Sachs, 1975; Algazi et al., 2001).

The responses of model neurons were then calculated
as follows. If the stimulus energy envelope difference was
within a preset range of the neuron’s preferred 1E, then
that energy-envelope difference was weighted by the energy
envelope of either uL

(
t; fk

)
or uR

(
t; fk

)
. The ITD and ILD

components were combined additively at the subthreshold
level and then transformed via a sigmoidal input-output non-
linearity (i.e., an activation function) to obtain an instantaneous
firing rate. Finally, a Poisson spiking generator was used to
generate spike trains for each neuron [rθ

(
t; fk

)
, Figure 1]. This

sequence of operations is expected to produce a multiplicative
spiking response to ITD and ILD in each model neuron
as explained in Fischer et al. (2009). These steps, including
the activation function, were kept identical for all frequency
channels. Parameters for the input-output nonlinearity were
modified from a step-function to a sigmoidal function to
increase the dynamic range of the model neurons’ firing rates.

The model can be implemented with any number and
configuration of STNs. For illustrations of spatial tuning curves
in Figure 2A, nine sets of STNs were constructed where θ ∈

{0◦, ± 30◦, ± 45◦, ± 60◦, ± 90◦}. The ILDs used
in generating the neuron spatial tuning curves are shown in
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Figure 2B, where each line represents 1E
(
θ, fk

)
for a set of

STNθ. All other results were obtained by constructing five sets
of STNs, where θ ∈ {0◦, ± 30◦, ± 60◦}.

Stimulus reconstruction

The stimulus reconstruction module decodes ensembles
of neural spikes into audible waveforms, using an approach
similar to ideal time-frequency mask estimation (Wang, 2005).
The concept of time-frequency masks can be summarized as
follows: for a time-frequency representation of an audio mixture
(e.g., spectrogram) consisting of a target and interferers, one
can evaluate each element (i.e., time-frequency tile) of such
a representation and determine whether the energy present is
dominated by the target or the masker. If the target sound
dominates, a value of unity (1) is assigned to that time-frequency
tile, and zero (0) otherwise. This process creates an ideal binary
mask. Alternatively, assigning the ratio of energies of the target
to total energies in a time-frequency tile yields the ideal ratio
mask (Srinivasan et al., 2006). One can then estimate the target
sound by applying the mask to the sound mixture via element-
wise multiplication. This process has been shown to recover the
target with high fidelity in various types of noise (Wang, 2005).
A key idea to both binary and ratio masks is the application
of a gain factor to each time-frequency tile of a signal. In the
proposed BOSSA algorithm we adopt a similar approach but
calculate the gain factor for each time-frequency tile based solely
on user-defined knowledge of the target location, as explained
below.

The spiking responses from the spatially tuned neurons,
r
(
t; fk

)
, were convolved with a kernel, h (t), to calculate a

smoothed, firing-rate-like measure. We set the kernel to be an
alpha function: h (t) = te−t/τh , a common function involved
in modeling neural dynamics. We used a value of τh = 20 ms
(see section Model Parameters) and the kernel was restricted to
a length of 100 ms.

The same kernel was convolved with the spike trains of each
frequency channel independently. The resulting firing rates of
each set of STNs were treated as a non-binary time-frequency
mask:

FRMask
(
t; fk

)
= r

(
t; fk

)
∗ h (t)

where ∗ denotes convolution. We note that the FRMask is akin
to a smoothed version of the firing rate. Thus, in theory, FRMask
could be directly derived from the firing rate (without the need
for spikes). However, the midbrain model can be used as a front-
end to spiking network models, where the calculation of spikes
is necessary (Chou et al., 2019). Thus, we kept this more versatile
implementation.

The mask was then applied (i.e., point-multiplied) to the
left and right channels of the original sound mixture. Then,
we summed (without weighting) each frequency channel of

the FRMask-filtered signal to obtain an audible, segregated
waveform. We designated this result as Ŝ.

Ŝj =
∑

k

FRMask
(
t; fk

)
· uj

(
t; fk

)
, j ∈ {L, R}

This procedure resulted in a binaural signal and retained the
natural spatial cues of the sound sources.

To reduce spatial leakage, we calculated a DiffMask by
calculating FRMasks for each STNθ, then subtracting scaled
versions of the off-center STNθ from STN0, followed by
rectification:

DiffMask = Max
(
FRMask0 − a6FRMaskθ, 0

)
where θ ∈ [± 30◦, ± 60◦] corresponds to the location
of maskers in our experimental stimuli (see section
“Psychophysical Experiment”). In this operation, each FRMask
was first scaled to [0,1]. The scaling factor a was chosen to
be 0.5 (see section “Model Parameters”) and was fixed across
all frequencies and spatial channels to reduce the amount of
computational complexity in the algorithm.

Model parameters

Although a behavioral measure of algorithm performance
using human psychophysics is the gold standard, such
experiments are too time-consuming to explore model
parameter variations. For practical reasons, most model
parameters were fixed to biologically plausible values. We
explored variations in the time-constant of the alpha function
kernel (τh), and the scaling factor for DiffMask (a). We chose
the specific values of these parameters using an iterative process
by trying a range of values, quantifying algorithm performance
using the Short Time Objective Intelligibility (STOI) measure
(Taal et al., 2010), and choosing parameters that produced the
highest average STOI. STOI is an approximation of speech
intelligibility, and ranges between 0 and 1. We do not claim
that this approach produces an optimal set of parameters for
reconstruction. However, objective measures combined with
our behavioral results indicate that the parameter values we
chose generated good reconstructions.

Algorithm performance

Spatial tuning characteristics

Spatial tuning responses of STNs were important predictors
of the model’s segregation performance. We define “spatial
tuning curves” as the spiking activity of STNs as a function
of stimulus location. To construct spatial tuning curves, white
Gaussian noise was convolved with anechoic KEMAR HRTFs,
then presented to the algorithm. Figure 2 shows the responses of
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FIGURE 2

Spatial Tuning Characteristics of STNs. (A) Spatial Tuning Curves of STNs, represented as total neural activity in response to a White Gaussian
Noise (WGN). Each colored line represents the total response from a set of STNs. Tuning curves of STNs tuned to 0◦, 60◦, and 90◦ azimuth are
bolded. (B) Preferred ILDs of STNs, calculated using WGNs placed at various locations along the azimuthal plane.

STNs combined across frequency channels. Ideally, STNs would
only respond to stimuli from one specific direction. However,
Figure 2 shows that all STNs also respond to off-target locations.
For example, STNs tuned to 0◦ azimuth (Figure 2A, green
curve) respond to stimuli at ±30◦ azimuth and even have a
non-zero response to stimuli at ±90◦ azimuth. We refer to this
property as “spatial leakage,” which occurs due to overlap in the
bandpass filters as well as the fact that a given binaural cue can
occur for stimuli from multiple locations (Figure 2B) and thus
contain some ambiguity (Brainard et al., 1992).

Spatial leakage

Leakage across spatial channels limits the performance of
the algorithm, especially when multiple sound sources are
present. To demonstrate, two randomly selected sentences were
presented individually to the model from 0◦ azimuth, 90◦

azimuth, or simultaneously from both locations. The responses
of three set of STNs, tuned to 90◦, 45◦, and 0◦, are shown
as spike-rasters in Figure 3. Each row within a raster plot
represents the spiking response from the neuron tuned to
that particular frequency channel. Due to spatial leakage, all
STNs respond to the single sentence placed at 0◦ or 90◦

(Figures 3A,B). When both sentences are present, ITDs and
ILDs interact to produce complicated STN response patterns
(Figure 3C). Spatial leakage limits the ability of STNs to
respond to a single talker, since any one spatial channel contains
information from other spatial channels. Lateral inhibition was
designed to address the issue of spatial leakage by suppressing
neural activation by off-target sound streams.

DiffMask

The DiffMask operation was inspired by lateral inhibition
observed in biological networks. This operation was applied to
the spatial tuning curves of 0◦ STNs to illustrate its sharpening
effect on spatial tuning. Figure 4A shows the tuning curves
prior to the DiffMask operation. Some neurons within the 0◦

STNs were activated by stimuli from as far away as 90◦ (see side
peaks). After the DiffMask operation, spiking activity elicited by
far-away stimuli was silenced, and side-peaks were suppressed
considerably (Figure 4B). Using a subset of STNs during the
DiffMask operation, such as those tuned to ±30◦ (Figure 4C)
or ±60◦ (Figure 4D), did not suppress side-peaks as effectively
as if both±30◦ and±60◦ were used.

Psychophysical experiment

A psychophysical experiment was conducted to quantify the
perceptual benefit provided by the algorithm for listeners with
normal hearing. The performance of FRMask and DiffMask
was compared against a 16-microphone super-directional
beamformer, called BEAMAR (Kidd et al., 2015; Best et al.,
2017). BEAMAR attenuates off-center sounds by combining the
weighted output of 16 omni-directional microphones into a
single channel, using an optimal-directivity algorithm (Stadler
and Rabinowitz, 1993). BEAMAR does not process frequencies
below 1 kHz in order to retain natural spatial cues in that
frequency region. The combination of beamforming at high
frequencies and natural binaural signals at low frequencies has
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FIGURE 3

Raster plots of STN responses to (A) top row, a single sentence placed at 0◦ azimuth, (B) center row, a different sentence placed at 90◦ azimuth,
and (C) bottom row, both sentences present at their respective locations. Columns show the STN responses when tuned to the location
indicated.

FIGURE 4

Spatial Tuning of the 0◦ STNs for before (A) and after (B–D) the DiffMask operation. Each line represents the spatial tuning curve of a single
frequency-specific neuron within the set of STNs ranging from 200 to 8 kHz with ERB spacing. STN of the neuron tuned to the lowest
frequency is placed on the bottom of the plots. STNs involved in the DiffMask operation are denoted in each subplot.

been shown to provide a significant benefit to both normal-
hearing and hearing-impaired listeners attending to a target
speech sentence in a multi-talker mixture (Best et al., 2017).

Participants

Participants in this study were eleven young normal-
hearing listeners, ages 18–32. All listeners had symmetrical
audiogram measurements between 0.25 and 8 kHz with hearing
thresholds within 20 dB HL. Participants were paid for their

participation and gave written informed consent. All procedures
were approved by the Boston University Institutional Review
Board (protocol 1301E).

Stimuli

Five-word sentences were constructed from a corpus of
monosyllabic words (Kidd et al., 2008), with the form [name-
verb-number-adjective-noun] (e.g., “Sue found three red hats”).
The corpus contains eight words in each of the five categories.
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Each word in each sentence was spoken by a different female
talker, randomly chosen from a set of eight female talkers,
without repetition. During each trial, a target sentence was
mixed with four masker sentences, all constructed in the same
manner. Words from the target and masker sentences were
time-aligned, so that the words from each category shared the
same onset. The design of these stimuli was intended to reduce
the availability of voice and timing-related cues, and as such
increase the listener’s use of spatial information to solve the task.

The five sentences were simulated to originate from five
spatial locations: 0◦, ±30◦, and ±60◦ azimuth, by convolving
each sentence with anechoic KEMAR HRTFs. The target
sentence was always located at 0◦ azimuth. The four maskers
were presented at 55 dB SPL from±30◦, and±60◦ azimuth. The
level of the target was varied to achieve target-to-masker ratios
(TMRs) of –5, 0, and 5 dB.

Stimuli were processed using one of three methods:
BEAMAR, FRMask, and DiffMask. A control condition
was also included, in which stimuli were spatialized
using KEMAR HRTFs to convey “natural” cues but were
otherwise unprocessed.

Procedures

Three blocks were presented for each of the four conditions,
with each block containing five trials at each of the three TMRs
(15 total trials per block). This resulted in 15 trials per TMR for
each of the four processing conditions, and a total of 180 trials
across all conditions. The order of presentation of TMRs within
a block, and the order of blocks for each participant, were chosen
at random. The experiment took approximately 1 h to complete.

Stimuli were controlled in MATLAB and presented via a real
time processor and headphone driver (RP2.1 & HB7, Tucker
Davis Technologies, Alachua, FL, United States) through a pair
of headphones (Sennheiser HD265 Linear). The sound system
was calibrated at the headphones with a sound meter (type
2250; Brüel & Kjær, Nærum, Denmark). Participants were seated
in a double-walled sound-treated booth. A computer monitor
inside the booth displayed a graphical user interface containing
a grid of 40 words (five columns of eight words, each column
corresponding to one position of the five word sentence). For
each trial, participants were presented a sentence mixture and
were instructed to listen for the target sentence located directly
in front. They responded with a mouse by choosing one word
from each column on the grid.

Analysis

Each participant’s performance was evaluated by calculating
the percentage of correctly answered keywords across all trials
for a given condition. Psychometric functions were generated

by plotting the percent correct as a function of TMR and fitting
a logistic function to those data. Speech reception thresholds
(SRTs), which are the TMRs corresponding to 50% correct, were
extracted from each function using the psignifit toolbox (Schütt
et al., 2016). Differences in SRTs between the natural condition
and each of the processing conditions was taken to be the
“benefit” provided by that processing method. Statistical analysis
was done in Python using the statsmodels package (Seabold and
Perktold, 2010).

Results

Figure 5A shows the percentage of correct responses
for each TMR and processing method. A two-way repeated-
measures ANOVA found a significant interaction between
processing method and TMR on performance [F(6,60) = 6.97,
p < 0.001]. Post hoc pairwise comparisons using Tukey’s HSD
test found significant differences between the natural condition
and each of the three processing methods for all three TMRs
(p < 0.001), suggesting that subjects significantly benefitted
from listening to processed speech across all TMRs. At +5-dB
TMR, performance was equivalent under all three processing
conditions. However, at –5-dB and 0-dB TMR, performance
was better for DiffMask than FRMask, and similar for DiffMask
and BEAMAR. Figure 5B presents the same results in terms
of SRTs, and Figure 5C shows the benefit (in dB) of each
processing method relative to the natural condition. A one-
way repeated measures ANOVA followed by Tukey’s multiple
pairwise comparison showed that all three algorithms provided
significant benefit to listeners (p < 0.001). Benefits provided
by BEAMAR and DiffMask were not significantly different
(p = 0.66). Out of the eleven listeners, two achieved the lowest
SRT and gained the most benefit from BEAMAR, while nine
achieved the lowest SRT and gained the most benefit from
DiffMask.

Discussion

Extensive research has been devoted to developing a
solution for the CPP [for review, see Qian et al. (2018)], and
many approaches benefit from using multiple microphones.
For example, the performance of methods using independent
component analysis degrades quickly as the number of
sources exceeds the number of microphones (Hyvärinen
et al., 2001). In acoustic beamforming, performance of the
beamformer can be significantly improved by increasing the
number of microphones used (Greenberg and Zurek, 2001;
Greenberg et al., 2003). Although traditional beamformers
produce a single-channel output, which cannot carry binaural
information, a variety of spatial-cue preservation strategies have
been proposed to overcome this limitation (Doclo et al., 2010;

Frontiers in Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2022.1004071
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1004071 October 10, 2022 Time: 14:13 # 8

Chou et al. 10.3389/fnins.2022.1004071

FIGURE 5

Behavioral evaluation results. (A) Average percent correct for each processing condition as a function of TMR. n = 11. Higher is better.
(B) Average and individual subject speech reception threshold for each processing method. Lower is better. Solid lines connect the SRTs for
each participant. (C) Average and individual subject perceptual benefits relative to the natural condition. Higher is better.

Best et al., 2017; Wang et al., 2020). Here we demonstrated
that equivalent performance to a highly optimized beamformer
(such as BEAMAR) may be possible using a biologically inspired
algorithm that uses only two microphones placed in the ears.
Our biologically oriented sound segregation (BOSSA) model
provided a substantial benefit in a challenging cocktail party
listening situation, and this benefit was larger than that provided
by BEAMAR in the majority of our young, normal hearing
participants. While this is a promising result, further work is
needed to examine the benefits of BOSSA under a wider variety
of scenarios and in other groups of listeners. Comparisons to
other two-microphone solutions such as binaural beamformers
(Doclo et al., 2010; Best et al., 2015), as well as deep-learning
solutions that operate on two or even a single microphone
(Roman et al., 2003; Healy et al., 2013), would also be interesting.

Spiking neural networks traditionally do not have
applications in audio processing due to the lack of a method
that produces intelligible, high-quality reconstructions. The
“optimal prior” method of reconstruction is often used to
obtain reconstructions from physiologically recoded neural
responses (Bialek et al., 1991; Stanley et al., 1999; Mesgarani
et al., 2009; Mesgarani and Chang, 2012), but produces single-
audio-channel reconstructions of poor quality and intelligibility
(Chou et al., 2019). The optimal prior method computes a linear
filter between a training stimulus and the response of neuron
ensembles, and filter needs to be re-trained if the underlying
network changes. In contrast, the mask-based reconstruction
method used in this study estimates time-frequency masks from
spike trains. It is able to obtain reconstructions with much
higher intelligibility and preserves spatial cues, all without the
need for training. These properties enable rapid development of
spiking neural network models for audio-related applications.

Within the biologically plausible algorithms we tested, the
difference in performance between FRMask and DiffMask is
noteworthy and interesting. The spatial tuning plots (Figure 2)

quantify the tuning of a given spatial channel to a single
sound as it is moved around the lateral spatial field which are
reasonably well-tuned. Moreover, Figures 3A,B, for example,
illustrate the response of the 0◦ channel to sounds presented
at 0◦ and 90◦. In this case, the 0◦ channel responded primarily
to the frontal sound. By themselves, these plots do not suggest
problems with spatial tuning and leakage. However, in our
psychophysical experiments, we presented a target sound at 0◦

with four competing maskers from ±30◦ and ±60◦, a far more
challenging scenario. In such a scenario, spatial leakage is more
significant, and refining/improving spatial tuning improves
sound segregation, as demonstrated in the improvement with
DiffMask over FRMask.

It is also worth noting that our algorithms were based
on processing in the barn owl midbrain which contains a
topographic map of space, whereas, in mammals, no such
topographic map has been found. Despite this difference,
the spatially tuned responses of neurons in the model could
be leveraged to improve speech segregation performance in
humans. This demonstrates that brain inspired algorithms based
on non-human model systems can improve human perception
and performance.

The work presented here represents a preliminary
evaluation of the BOSSA model, and it identified a number of
issues and limitations that deserve further investigation. While
the formulation of DiffMask can sharpen the spatial tuning of
the STNs, neurons tuned to frequencies below 300 Hz were
completely silenced for the stimuli we tested (Figure 4B). Low
spatial acuity in this frequency range results in a similar response
at on and off target STNs. The off-target response scaling and
summation that forms DiffMask then results in a complete
subtraction of on-target activity below 300 Hz. Additionally,
some side peaks still persist even after the DiffMask operation,
implying that spatial leakage was not fully addressed. Different
formulations of the DiffMask may address these shortcomings.

Frontiers in Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2022.1004071
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1004071 October 10, 2022 Time: 14:13 # 9

Chou et al. 10.3389/fnins.2022.1004071

Moreover, our DiffMask implementation used a specific number
of off-target STNs at specific locations, which were aligned with
the locations of makers in our experimental stimuli. Further
works is needed to explore how DiffMask can be optimized to
support arbitrary target and masker configurations, and how
the resolution of the STNs affects model performance. We have
avoided using deep-learning approaches in this study in favor of
biological interpretability, but such approaches may help guide
the optimization of DiffMask and could be very valuable in
that respect. Another potential limitation of the algorithm is
that it processes each frequency channel independently. While
this design choice reduces both the complexity of the algorithm
and its computation time, it excludes the possibility for
across-frequency processing that could improve performance
(Krishnan et al., 2014; Szabó et al., 2016). Finally, animals have
been observed to resolve binaural cue ambiguity by having
neurons preferentially tune to more reliable spatial cues in
different frequency regions (Cazettes et al., 2014). Inspiration
could be taken from these observations to improve spatial
tuning and overcome spatial leakage. Again, deep-learning
based optimization methods may help identify these reliable
cues for human listeners and multitalker mixtures.

Future work with the BOSSA model could include both
sound segregation and localization by comparing the response
of each spatial tuning curve to predict source azimuth, possibly
utilizing a denser array of STNs. Another idea we plan to explore
in the future is to apply automatic speech recognition systems to
optimize the parameters of the algorithm. This optimization can
be performed relatively fast before conducting time-consuming
psychophysics experiments. During this optimization process
we also plan to investigate the effects of varying sound pressure
level and source dynamics on BOSSA performance.
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