87 research outputs found

    Curvature and confinement effects for flame speed measurements in laminar spherical and cylindrical flames.

    Get PDF
    This paper discusses methods used to obtain laminar flame speeds in spherical laminar premixed flames. Most recent studies express the laminar flame consumption speed as ρb/ρudR/dt, where R is the flame radius and ρb/ρu is the ratio of the burnt to the fresh gas density (ρb is evaluated at chemical equilibrium and supposed to be constant). This paper investigates the validity of this assumption by reconsidering it in a more general framework. Other formulae are derived and tested on a DNS of cylindrical flames (methane/air and octane/air). Results show that curvature and confinement effects lead to variations of ρb and ρu and to significant errors on the flame speed. Another expression (first proposed by Bradley and Mitcheson in 1976) is derived where no density evaluation is required and only pressure and flame radius evolution are used. It is shown to provide more precise results for the consumption speed than ρb/ρudR/dt because it takes into account curvature and confinement of the flame in the closed bomb

    Large-Eddy Simulation of combustion instabilities in a variable-length combustor.

    Get PDF
    This article presents a simulation of a model rocket combustor with continuously variable acoustic properties thanks to a variable-length injector tube. Fully compressible Large-Eddy Simulations are conducted using the AVBP code. An original flame stabilization mechanism is uncovered where the recirculation of hot gases in the corner recirculation zone creates a triple flame structure. An unstable operating point is then chosen to investigate the mech- anism of the instability. The simulations are compared to experimental results in terms of frequency and mode structure. Two-dimensional axi-symmetric computations are com- pared to full 3D simulations in order to assess the validity of the axi-symmetry assumption for the prediction of mean and unsteady features of this flow. Despite the inaccuracies in- herent to the 2D description of a turbulent flow, for this configuration and the particular operating point investigated, the axi-symmetric simulation qualitatively reproduces some features of the instability

    Experimental and numerical study of the accuracy of flame-speed measurements for methane/air combustion in a slot burner

    Get PDF
    Measuring the velocities of premixed laminar flames with precision remains a controversial issue in the combustion community. This paper studies the accuracy of such measurements in two-dimensional slot burners and shows that while methane/air flame speeds can be measured with reasonable accuracy, the method may lack precision for other mixtures such as hydrogen/air. Curvature at the flame tip, strain on the flame sides and local quenching at the flame base can modify local flame speeds and require correc- tions which are studied using two-dimensional DNS. Numerical simulations also provide stretch, dis- placement and consumption flame speeds along the flame front. For methane/air flames, DNS show that the local stretch remains small so that the local consumption speed is very close to the unstretched premixed flame speed. The only correction needed to correctly predict flame speeds in this case is due to the finite aspect ratio of the slot used to inject the premixed gases which induces a flow acceleration in the measurement region (this correction can be evaluated from velocity measurement in the slot section or from an analytical solution). The method is applied to methane/air flames with and without water addition and results are compared to experimental data found in the literature. The paper then discusses the limitations of the slot-burner method to measure flame speeds for other mixtures and shows that it is not well adapted to mixtures with a Lewis number far from unity, such as hydrogen/air flames

    Stabilization of a supercritical hydrogen / oxygen flame behind a splitter plate

    Get PDF
    The numerical simulation of fluid dynamics and combustion in cryogenic rocket engines is addressed in this paper, with the intent to elucidate flame stabilization mechanisms. A model configuration is devised to allow a fully resolved simulation, both for the dynamics and the flame structure: a two-dimensional splitter plate represents the lip of an injector and the operating point is typical of a real engine. The non-reacting flow field is first scrutinized to evaluate the impact of the large density gradients between the fuel (hydrogen) and oxidizer (oxygen) streams. It is found that the turbulence generated by the splitter is very intense and strongly distorts the high-density-gradient front at both small and large scales. Under reacting conditions, the flame stabilizes right at the lip of the injector, which is a common feature of hydrogen / oxygen flames under these conditions. A particularly complex flame structure is evidenced at the anchoring point, with turbulent transport playing an important role

    Driving and damping mechanisms for transverse combustion instabilities in liquid rocket engines

    Get PDF
    This work presents the analysis of a transverse combustion instability in a reduced-scale rocket engine. The study is conducted on a time-resolved database of three-dimensional fields obtained via large-eddy simulation. The physical mechanisms involved in the response of the coaxial hydrogen/oxygen flames are discussed through the analysis of the Rayleigh term in the disturbance-energy equation. The interaction between acoustics and vorticity, also explicit in the disturbance-energy balance, is shown to be the main damping mechanism for this instability. The relative contributions of Rayleigh and damping terms, depending on the position of the flame with respect to the acoustic field, are discussed. The results give new insight into the phenomenology of transverse combustion instabilities. Finally, the applicability of spectral analysis on the nonlinear Rayleigh and dissipation terms is discussed

    Effects of hydrogen and steam addition on laminar burning velocity of methane–air premixed flame: Experimental and numerical analysis

    Get PDF
    Effects of hydrogen enrichment and steam addition on laminar burning velocity of methaneeair premixed flame were studied both experimentally and numerically. Measurements were carried out using the slot burner method at 1 bar for fresh gases temperatures of 27 °C and 57 °C and for variable equivalence ratios going from 0.8 to 1.2. The hydrogen content in the fuel was varied from 0% to 30% in volume and the steam content in the air was varied from 0 to 112 g/kg (0e100% of relative humidity). Numerical calculations were performed using the COSILAB code with the GRI-Mech 3.0 mechanism for one-dimensional premixed flames. The calculations were implemented first at room temperature and pressure and then extended to higher temperatures (up to 917 K) and pressures (up to 50 bar). Measurements of laminar burning velocities of methanee hydrogeneair and methaneeairesteam agree with the GRI-Mech calculations and previous measurements from literature obtained by different methods. Results show that enrich- ment by hydrogen increases of the laminar burning velocity and the adiabatic flame temperature. The addition of steam to a methaneeair mixture noticeably decreases the burning velocity and the adiabatic flame temperature. Modeling shows that isentropic compression of fresh gases leads to the increase of laminar burning velocity

    Criteria for Modeling in LES of Multicomponent Fuel Flow

    Get PDF
    A report presents a study addressing the question of which large-eddy simulation (LES) equations are appropriate for modeling the flow of evaporating drops of a multicomponent liquid in a gas (e.g., a spray of kerosene or diesel fuel in air). The LES equations are obtained from the direct numerical simulation (DNS) equations in which the solution is computed at all flow length scales, by applying a spatial low-pass filter. Thus, in LES the small scales are removed and replaced by terms that cannot be computed from the LES solution and instead must be modeled to retain the effect of the small scales into the equations. The mathematical form of these models is a subject of contemporary research. For a single-component liquid, there is only one LES formulation, but this study revealed that for a multicomponent liquid, there are two non-equivalent LES formulations for the conservation equations describing the composition of the vapor. Criteria were proposed for selecting the multicomponent LES formulation that gives the best accuracy and increased computational efficiency. These criteria were applied in examination of filtered DNS databases to compute the terms in the LES equations. The DNS databases are from mixing layers of diesel and kerosene fuels. The comparisons resulted in the selection of one of the multicomponent LES formulations as the most promising with respect to all criteria

    DNSs of Multicomponent Gaseous and Drop-Laden Mixing Layers Achieving Transition to Turbulence

    Get PDF
    A paper describes direct numerical simulations (DNSs) of three-dimensional mixing-layer flows undergoing transition to turbulence; the mixing layers may or may not be laden with evaporating liquid drops

    DNS of Intrinsic ThermoAcoustic modes in laminar premixed flames

    Get PDF
    Recent studies [Hoeijmakers et al. 2014, Emmert et al. 2015] suggest that thermoacoustic modes can appear in combustors with anechoic terminations, which have no acoustic eigenmodes. These modes, called here Intrinsic ThermoAcoustic (ITA), can be predicted with simple theoretical arguments, but have been ignored for a long time. They are reproduced in this paper using Direct Numerical Simulation (DNS) of a laminar premixed Bunsen type flame. DNS results and theory are compared showing very good agreement in terms of both frequency and mode structure. DNS confirms that the frequency of ITA modes does not depend on any acoustic characteristic of the burner. Based on a numerical evaluation of the Flame Transfer Function, stability limits of ITA modes predicted by theory are also recovered in the DNS with reasonable accuracy. Finally, DNS is used to analyze the mechanisms of ITA modes

    Coupling heat transfer and large eddy simulation for combustion instability prediction in a swirl burner

    Get PDF
    Large eddy simulations (LES) of combustion instabilities are often performed with simplified thermal wall boundary conditions, typically adiabatic walls. However, wall temperatures directly affect the gas temper- atures and therefore the sound speed field. They also control the flame itself, its stabilization characteris- tics and its response to acoustic waves, changing the flame transfer functions (FTFs) of many combustion chambers. This paper presents an example of LES of turbulent flames fully coupled to a heat conduc- tion solver providing the temperature in the combustor walls. LES results obtained with the fully coupled approach are compared to experimental data and to LES performed with adiabatic walls for a swirled turbulent methane/air burner installed at Engler-Bunte-Institute, Karlsruhe Institute of Technology and German Aerospace Center (DLR) in Stuttgart. Results show that the fully coupled approach provides rea- sonable wall temperature estimations and that heat conduction in the combustor walls strongly affects both the mean state and the unstable modes of the combustor. The unstable thermoacoustic mode ob- served experimentally at 750 Hz is captured accurately by the coupled simulation but not by the adiabatic one, suggesting that coupling LES with heat conduction solvers within combustor walls may be necessary in other configurations in order to capture flame dynamics
    corecore