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a b s t r a c t

This paper discusses methods used to obtain laminar flame speeds in spherical laminar premixed flames.

Most recent studies express the laminar flame consumption speed as qb/qu dR/dt, where R is the flame

radius and qb/qu is the ratio of the burnt to the fres h gas density (qb is evaluated at chemical equilibrium 

and supposed to be constant). This paper investigates the validity of this assumption by reconsidering it

in a more general framework. Other formulae are derived and tested on a DNS of cylindrical flames

(methane/air and octane/air). Results show that curvature and confinement effects lead to variations of

qb and qu and to significant errors on the flame speed. Another expression (first proposed by Bradley 

and Mitcheson in 1976) is derived where no density evaluation is required and only pressure and flame

radius evolution are used. It is shown to provide more precise results for the consumption speed than qb/

qu dR/dt because it takes into account curvature and confinement of the flame in the closed bomb.

1. Introduction 

The experimental determination of the laminar consumptio n

flame speed, s0
L , is an overarching problem in combusti on [1].

Indeed the knowledge of the rate at which the fresh gases are con- 

sumed is instrumenta l in the study of flame dynamics as well as

the developmen t of kinetic schemes. For modeling purposes, the 

laminar flame speed is the central ingredient of most turbulent- 

combustion models [2–6].

Despite the apparent simplicit y in the formulation of the prob- 

lem, measuring accurately s0
L is a delicate task. Since the early at- 

tempts, which date as far back as a hundred and fifty years ago 

[7–11], a variety of methods have been devised. These methods 

find their roots in analytical solutions of reacting fluid mechanics 

but most of them suffer from approximation s or experimental dif- 

ficulties that strongly affect their precision. For example, the flat

flame propagat ing in a tube is strongly perturbed by instabilities 

or the presence of walls [12,13]. Other techniques require extrap- 

olation or correcting factors in order to account for the effects of

curvature or strain [14–17].

In the present paper, we revisit the classical technique of the 

‘spherical flame in a bomb ’ (Fig. 1a): in a closed vessel, a mixture 

of fresh gases is ignited, a spherical flame develops and its radius,

R(t), is measured vs. time using simple optical methods.

Such experiments are fairly easy to conduct. Moreover initial 

condition s (temperature, pressure, composition, etc.) are well con- 

trolled and can be extended to high temperature s and pressures.

However , extracting flame speed values from spherical flames is

a much more difficult exercise which has lead to multiple contro- 

versies in the past [18–22]. Two quantities can be measured exper- 

imentally to construct a flame speed in a bomb: (1) the flame

radius evolution R(t) and (2) the bomb pressure P(t). Most existing 

methods use one of these two quantities (or the two) to deduce 

flame speeds.1

Assumin g that R(t) and/or P(t) are available , two independen t

steps are then required to obtain flame speeds:

� STEP I: the instantaneous flame speed must be obtained from 

R(t) and/or P(t).

� STEP II: since a spherical flame is a stretched flame, the speed 

which is measured in STEP I is not the unstretched laminar 

flame speed s0
L but a stretched flame speed sL(j) where j = 2/R

dR/dt is the instantaneous flame stretch. Therefore a model for 

sL(j) is needed to obtain s0
L . This model is usually based on a

Markstein- type correlation [21,24,25], for example the linear 

expression:

sLðjÞ ¼ s0
L ÿ Lj ð1Þ

⇑ Corresponding author.

E-mail addresses: adrien.bonhomme@imft.fr (A. Bonhomme), laurent.selle@

imft.fr (L. Selle), thierry.poinsot@imft.fr (T. Poinsot).

1 Recent methods using direct flow and front speed measurements have begun in

the last two years [23] but they are not discussed here.



where L is the Markste in length which becomes an addition al un- 

known quantity to determine [26]. In the past five years, other 

expressions have also been proposed to replace Eq. (1) (mostly

based on the non-linea r form of sb [27,21]).

This paper does not discuss STEP II and focuses on STEP I. Dur- 

ing this step, approximat ions between the various flame speeds 

characterizi ng a front are utilized and the present work shows that 

they can have a direct impact on the result. Indeed, the only speed 

which is unambiguously measured in a bomb is the flame speed of

the front relative to the burnt gases sb(j) = dR/dt because the 

burned gases do not move.

Obtaining a relation between sb(j) and sL(j) is a delicate task 

because it requires well chosen assumptions . A classical, albeit 

approximat e, relation used in multiple recent studies is:

sLðjÞ ¼
qb

qu

sbðjÞ ð2Þ

where qb is the density of the burnt gases and qu that of the unburnt 

gases.

In addition to stretch, other factors modify the flame speed in a

spherical explosion [27,21,28,29]:

1. In the early stages, the energy of the spark modifies the burnt 

gases temperature as well as the flame speed.

2. Curvature effects and preferential diffusion (for non-unity 

Lewis number) also influence the evolution of the flame and 

the burnt gases temperature. In Eq. (2), most authors recognize 

that sb depends on stretch but neglect the influence of stretch 

on qb. However, the burnt gases density, like the burnt gases 

temperature , is affected by stretch too. And even if this effect 

is smaller than the effect of j on sL it must be taken into 

account.

3. For large radii, the confinement of the flame in a closed vessel 

influences qu and qb and therefore changes the flame speed.

The objective of the present work is to revisit the formulation of

Eq. (2) and to propose theoretical expressions for the consumptio n

flame speed that alleviate the problems of Eq. (2). The derivations 

are presented in Section 2 and Direct Numerical Simulations (DNS)

are conducted in Section 3 where the formulae can be compared to

the true consumptio n speed based on the integral of the reaction 

rate [6] in the case of a cylindrical flame. All derivations are per- 

formed in two cases: (1) INF where the flame propagates in an infi-

nite medium, confinement effects do not exist and curvature 

effects due to non-unity Lewis number can be isolated, and (2)

BOMB where the flame propagates in a closed bomb where both 

curvature and confinement affect the burnt and fresh gases 

density.

2. Theoretical results 

Deriving an expression for flame speeds in a spherical or cylin- 

drical flame (cf. Fig. 1a) is a complex exercise [27,30–32]. It is pre- 

sented here without invoking an infinitely-thin-flame assumption.

The formulae for the consumption flame speed presented in this 

paper are based on the conservati on equation for the species. The 

definition of the consumptio n flame speed in a spherical flame is

obtained from the integral of the reaction rate _xk of one specie k

(fuel or products for example):

sc ¼
1

qu Yb
k ÿ Yu

k

� �

R2

Z R0

0

_xkr2dr ð3Þ

where qu is the fresh gases density , Yu
k and Yb

k are the mass fraction 

of specie k in the fresh and burnt gases respective ly and R0 is the 

integration boundary 2 (R0 > R). Since _xk cannot be measured exper- 

imentally , other indirect expressio ns are require d for sc. They can be

derived by starting from the conservation equation of specie k [6]:

@qYk

@t
þ ~rðqðu þ VkÞYkÞ ¼ _xk ð4Þ

where Yk is the mass fraction and Vk is the diffusion velocity of spe- 

cie k. Integrat ing Eq. (4) over the control volume (0 6 r 6 R0) yields:

dMk

dt
þ 4pR2

0quYkðr ¼ R0Þ½urðr ¼ R0Þ þ Vk;rðr ¼ R0Þ�

¼

Z R0

0

_xk4pr2dr ð5Þ

where Mk is the total mass of specie k in the domain:

Mk ¼
R

V qYkdV . The second left hand side term represent the flux

of specie k leaving the domain at r = R0. Including the definition of

the flame speed sc (Eq. (3)) in Eq. (5) gives:

dMk

dt
þ 4pR2

0quYkðr ¼ R0Þ½urðr ¼ R0Þ þ Vk;rðr ¼ R0Þ�

¼ sc4pR2qu Yb
k ÿ Yu

k

h i

ð6Þ

Fig. 1. Configuration for expanding flames.

2 R0 goes to the infinity for the case of a flame propagating in an infinte medium.



To obtain an explicit relation linking sc to R, the second left hand 

side term in Eq. (6) must be canceled. So the optimal choice of the 

specie k depends on the configuration:

� In a hypothetical infinite medium (INF configuration)

ur(r = R0) > 0. But if a product is used (Yp(r = R0) = 0), as long as

the flame has not reached the position r = R0 the second term 

on the LHS of Eq. (6) is also canceled.

� In a closed vessel (BOMB configuration) ur(r = R0) = 0 and 

Vk,r(r = R0) = 0, so that any species can be used in Eq. (6).

At this point in the derivation a consumptio n speed has been 

defined but no assumptions were made. The idea is now to link 

Mk to the flame radius R in order to get an expression for sc that

is accessible to experimental measureme nts. Two cases are distin- 

guished depending on which species k is used:

1. A product (k = p): a flame radius Rp based on the mass of prod- 

ucts is defined as:

R3
p ¼

Mp

4p
3
qbYp;b

ð7Þ

where Yp,b is the mass fraction of the product (e.g. CO2) in the burnt 

gases and qb is the burnt gases density (averaged spatially betwee n

r = 0 and r = Rp). Eq. (7) does not imply that the flame is thin: the 

mass of products Mp is defined unambiguou sly and Rp is the ‘equiv- 

alent’ radius of a sphere containing this mass. Combining Eqs. (6)

and (7) to eliminate Mp yields:

sp
c ¼

qb

qu

dRp

dt
þ

Rp

3qu

dqb

dt
ð8Þ

where the product mass fraction Yp,b is suppos ed to be constan t. Eq.

(8) is derived without assumptions on the domain where the flame

propaga tes: it can be used in a bomb of any size or in an infinite do- 

main [33].

In a simulati on Eq. (8) can be used directly because qb, qu and Rp can

be measured. In an experime nt, however, assumptions on qb and qu

are required . The most usual is to suppose that densities are con- 

stant (in space and time). Thus, it is generally assumed than qu re-

mains equal to its initial value (neglecting confinement effects, as

expected if the bomb is sufficiently large). And qb is obtained by

assuming that its value does not vary with r from 0 to Rp and is

equal to the burnt gases density at equilibrium qeq
b so that Eq. (8)

leads to:

sp;expe 
c ¼

qeq
b

quðt ¼ 0Þ

dRp

dt
ð9Þ

which is the expression used in most studies.3

2. The fuel (k = f): in an infinite domain, fuel cannot be used in Eq.

(6) because its flux is not zero at r = R0. However, in a bomb 

where u(r = R0) = 0 and Vk(r = R0) = 0, fuel can be used in Eq.

(6) leading to a formulation given by [34]. In this case, the 

radius of the flame based on the mass of fuel is defined by4:

R3
f ¼ R3

0 ÿ
Mf

4p
3
quY f ;u

ð10Þ

where Yf,u is the mass fraction of the fuel in the unburnt gases,

which is constant. Combining Eqs. (6) and (10) yields:

sf
c ¼

dRf

dt
ÿ

R3
0 ÿ R3

f

3R2
f

1

qu

dqu

dt
ð11Þ

Assuming an isentrop ic compress ion for the fresh gases which is a

very reasonable approximat ion here, one has (1/qu) dqu/dt = 1/(cuP)

dP/dt, where cu is the ratio of the heat capacities in the fresh gases.

Eq. (11) is then recast into:

sf
c ¼

dRf

dt
ÿ

R3
0 ÿ R3

f

3R2
f

1

cuP

dP

dt
ð12Þ

Note that Eqs. (9) and (12) are very different: Eq. (12) includes no

density ratio in front of dRf/dt which suggests that the pressure term 

dP/dt is important. Both expressions use a flame radius which is de- 

fined differently. For Eq. (9), the flame radius Rp is defined from the 

mass of products while for Eq. (12), the flame radius Rf is obtained 

from the mass of fuel. In practice, experimentally, the flame fronts 

are thin and it is probably impossible to distinguish Rp and Rf which

are both equal to the observed flame radius R. In other words, an

infinite thin flame assumption is implicitly done when post pro- 

cessing experiments. Eq. (12) can be used in bombs but not in an

infinite medium. It has been previously derived [31,30,34] but it

does not seem to be used, even though it is directly accessible in

an experiment because it requires only Rf and P vs. time as input 

data. It will be shown in Section 3.4 using DNS that Eq. (12) is insen- 

sitive to curvature and confinement effects, unlike Eq. (9).

3. Validation with numeric al simulations 

All flame speed expressions derived in Section 2 are summa- 

rized in Table 1. To check their accuracy, Eqs. (8), (9) and (12)

are compare d here in a simulation of cylindrical flames with the 

true consumptio n flame speed sc defined by Eq. (3).

Direct Numerical Simulations of cylindrical flames are per- 

formed using the AVBP code [35]. AVBP is an unsteady compress -

ible Navier–Stokes solver. The present simulations are performed 

with a third-order (in space and time) scheme called TTGC [36].

In order to address both confinement and Lewis number effects,

two simulations with different fuels in air are conducte d: a lean 

methane /air ðLeCH4
¼ 0:996; U ¼ 0:8Þ flame and a lean octane/ai r

flame ðLeC8H18
¼ 2:78; U ¼ 0:8Þ. The Lewis number is defined by

Lek = Dth/Dk, where Dth = k/(qcp) is the heat diffusivity coefficient

and Dk is the diffusion coefficient of specie k in the mixture. More- 

over two geometrical cases are also compared (configuration INF 

and BOMB).

3.1. Kinetic schemes 

Reduced two-step mechanism s are used for this work:

1. For methane a scheme [37] called 2S_CH4_CM 2 is employed .

CH4 þ
3

2
O2 ! CO þ 2 H2O ð13Þ

CO þ
1

2
O2 $ CO2 ð14Þ

2. For octane, a scheme called 2S_C8H18_AB was developed fol- 

lowing the same methodol ogy.

C8H18 þ
17

2
O2 ! 8 CO þ 9 H2O ð15Þ

CO þ
1

2
O2 $ CO2 ð16Þ

3 Note that an intermediate formulation could be sp;expe;2
c ¼ qb=qudRp=dt if a good 

approximation can be found for qb . We tested this solution but it shows that in Eq. (8)

a good evaluatio n of both qb and dqb=dt is important. In practice, even if this solution 

had worked in the DNS where we can have access to qb, it would have been difficult to

use in an experiment since qb is hardly measurable. sp;expe;2
c is not discuss anym ore in

this work.
4 The present derivation is valid for lean flames and is based on the fuel balance.

For rich flames, a similar derivation based on oxygen leads exactly to the same 

expression.



Both schemes account for the oxidation of the fuel through an

irreversible reaction at a rate q1 while a second reaction accounts 

for the equilibrium between CO and CO2 with a rate q2:

q1 ¼ A1
qYF

WF

� �nF
1 qYO2

W02

� �n
O2
1

exp
Ea;1

RT

� �

ð17Þ

q2 ¼ A2
qYCO

WCO

� �nCO
2 qYO2

W02

� �n
O2
2

ÿ
1

Ke

qYCO2

WCO2

� �n
CO2
2

2

4

3

5exp
Ea2

RT

� �

ð18Þ

where Ke is the equilibrium constan t for the CO/CO 2 equilibrium

and R the perfect-gas constant. The coefficients for the two schemes 

are recalle d in Table 2.

While the reduced scheme for methane has already been vali- 

dated [37], the validation of the 2S_C8H18_AB scheme for octane 

vs. a detailed scheme [38] is presented in Fig. 2.

For a one-dimensi onal planar flame at P0 = 101,325 Pa and 

T0 = 323 K, the reduced scheme reproduces accurately the laminar 

flame speed and burnt gases adiabatic temperature , for equiva- 

lence ratios up U = 1.2.

3.2. Numerical set-up 

The definition of the consumption speed, given in Eq. (3), can- 

not be measure d in an experime nt but it can easily be computed 

from a DNS: this is how the formulae proposed in this paper 

(Eqs. (8) and (12)) as well as the approximation of Eq. (9) are val- 

idated. A cylindrical flame propagating in a domain of size 

R0 = 10 cm is considered (Fig. 1b). When non-reflecting boundary 

conditions [39] are used at r = R0, the configuration mimics an infi-

nite medium where pressure is constant (INF configuration). If a

wall is setup at r = R0, the configuration corresponds to a closed 

vessel (BOMB configuration). Table 3 summarizes these two 

configurations.

Using symmetry boundary conditions, only a quarter of the 

bomb is meshed. The grid is refined within a radius r < 30 mm from 

the center with a cell size D = 25 lm to ensure that the flame front 

is fully resolved: 17–20 points in the thermal flame thickness, de- 

fined by d0
l ¼ ðTb ÿ TuÞ=max dT=dr (d0

l ¼ 0:43 mm for octane and 

0.51 mm for methane). The thermodyna mic conditions for all 

simulatio ns presented in this paper are U = 0.8, P0 = 101,325 Pa

and T0 = 323 K. As suggested by Bradley [33], the time interval used 

for plots correspond s to phases where the flame has grown enough 

(R > 5.5 mm) to have forgotten initial conditions but is still small 

enough compare d to the size of the bomb (R < 26.5 mm) to avoid 

wall effects and remain perfectly spherical . The flame is initialized 

by introducing a sphere of burnt gases of radius 1 mm, at temper- 

ature, density and species mass fractions corresponding to the 

equilibriu m conditions. This avoids to considers the details of the 

ignition phase and corresponds to the assumptions required for 

Eq. (9).

3.3. Curvature effects only: cylindrical flame in an infinite medium 

First, numerical simulatio ns are performed in an idealized case 

(INF configuration) where there is no compression to study the im- 

pact of the curvature effects only. This is achieved by using a non- 

reflecting outlet boundary condition (cf. Fig. 1b) at r = R0. Thus,

pressure , fresh-gases temperature and density remain constant .

In this configuration, there is a flux of fresh gases through the 

boundary r = R0 so that Eq. (8), based on the conservation of the 

product species is used. Eq. (12) cannot be used in the INF 

configuration.

Conseque ntly, Fig. 3 presents the comparison of Eqs. (8) and (9)

with the true consump tion flame speed sc (Eq. (3)) for both fuels.

Eq. (8) matches the true consumptio n speed for both fuels.

Moreove r all curves extrapolate to s0
L at j = 0. Interestingl y, Eq.

(9) shows a different behavior for the two fuels: while for methane 

it matches the true consumptio n speed, except in the very early 

times, for octane, there is a clear gap between the two curves. In

other words, Eq. (9) does not predict the correct stretched flame

speed for the octane/ai r flame. This phenomeno n is due to a Lewis 

number effect. When the flame is stretched, the burnt gases tem- 

perature is not equal to the adiabatic burnt gases temperature 

Tad. Figure 4 displays various temperature profiles vs. radius r

when the octane/air flame propagates. Shortly after the ignition,

the maximum temperature drops from the equilibrium Tad = 2051 -

K to about 1840 K. When the flame propagates, the temperature 

goes up again and comes back to Tad at the end of the simulation.

These changes are due to stretch: like the flame speed, the adi- 

abatic flame temperat ure is influenced by stretch and this effect 

has been analyzed in the literature [40,41]. The relation between 

the burnt gases temperature Tb and stretch j is:

Tb ÿ Tad

Tad

¼
1

Le
ÿ 1

� �

D

s0
L

2
j ð19Þ

where Le is the Lewis number of the limiting reactant and D a char- 

acteris tic diffusivi ty. For the methane/air flame since LeCH4 = 0.996,

Tb is almost insensitiv e to stretch so that qb is close to its equilib- 

rium value and Eq. (9) is close to the true flame speed (Fig. 3b).

On the other hand, for octane (LeC8H18 = 2.78), Tb < Tad so that 

qb > qad
b leading to an underestima tion of sc(j) in Fig. 3a by 2–3%.

To compare Eq. (19) and simulations , a temperatu re that represe nts 

Table 1

Consumption flame speed expressions in laminar deflagrations. R0 is the radius of the spherical bomb. R, Rp and Rf are evaluations of the flame radius. qeq
b is the burnt gases density 

at equilibrium.

Symbol Name Expression Validity 

sc True consumption speed sc ¼ 1
qu Yb

kÿYu
kð ÞR2

R R0

0
_xkr2dr Definition

sp
c Speed based on conservation of burnt gases sp

c ¼
qb

qu

dRp

dt þ
Rp

3qu

dqb

dt
Bombs or infinite medium 

sp;expe 
c Speed based on conservation of burnt gases & constant densities assumption sp;expe 

c ¼
qeq

b

quðt¼0Þ
dRp

dt
Bombs of very large size or infinite medium 

sf
c

Speed based on fuel conservation 
sf

c ¼
dRf

dt ÿ
R3

0ÿR3
f

3R2
f

1
cuP

dP
dt

Bombs only (of any size)

Table 2

Coefficients for the reduced kinetic schemes. Activation energies are in [cal mol ÿ1]

and pre-exponential constants in [cgs] units 

q1 A1 Ea,1 nF
1 nO2

1

methane 2.00 � 1015 35,000 0.9 1.1 

octane 6.05 � 1011 41,500 0.55 0.9 

q2 A2 Ea,2 nCO
2 nO2

2 nCO2

2

methane 2.00 � 109 12,000 1.0 0.5 1.0 

octane 4.50 � 1010 20,000 1.0 0.5 1.0 



fairly the burnt gases temperatu re for a given stretch must be de- 

fined. The maximum of temperature Tmax 
b seems to be reasonabl e

here, as presented by Fig. 5. In this paper, the charac teristic diffusiv- 

ity D used is the fuel molecu lar diffusivi ty in the fresh gases Du
f .

Figure 6 presents the comparison of Eq. (19) and results 

obtained in methane and octane air flame simulations.

A good agreement between theory and simulation is found: it

confirms that the burnt gases temperat ure (and therefore the burnt 

gases density in Eq. (9)) are not constant and change with stretch if

the Lewis number is not equal to unity. Figure 6 shows that for 

methane , Lewis effects are neglectible but not for octane. This ex- 

plains why in Fig. 3, sp;expe 
c matches the true consumptio n flame

speed sc for the methane but not for the octane.

3.4. Combined curvature and confinement effects: cylindrical flame in

a closed bomb 

Figure 7 shows the evolution of the various expressions for the 

consump tion speed,5 normal ized by the unstretched laminar flame

speed s0
L , vs. stretch. Using Eq. (9) (open circles) one recove rs the 

classica l shape for the flame speed: fairly linear at high stretch (small

radii) but bent downward for lower stretch (large radii). However,

the true consump tion speed based on the integral of the fuel 
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Fig. 2. Validation of the reduced scheme for octane/air flames at P0 = 101,325 Pa and T0 = 323 K. s Jerzembeck et al. [38], , 2S_C8H18_AB.

Table 3

Details on INF and BOMB configurations.

Case Boundary conditions at r = R0 Expression 

INF Non-reflecting Infinite medium, constant pressure 

BOMB u = 0 bomb of radius R0, pressure goes up
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Fig. 3. Normalized consumption speed vs. stretch for a configuration without 

compression (INF) with s0;CH4
L ¼ 0:255 m=s and s0;C8H18

L ¼ 0:264 m=s: — sc (Eq. (3));

sp;expe 
c (Eq. (9)); h sp

c (Eq. (8)).
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Fig. 4. Temperature profiles vs. the flame radius R when the octane/air flame
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t = 0 to t = 17.5 ms by step of 2.5 ms.
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5 Eqs. (8) and (12) are derived for a spherical flame but it is straightforward to modify 

them for a cylindrical flame. In this case Eq. (8) becomes sp
c ¼ qb

qu

dRp

dt þ
Rp

2qu

dqb

dt and Eq.

(12) becomes sf
c ¼

dRf

dt ÿ
R2

0ÿR2
f

2Rf

1
cu P

dP
dt .



consump tion rate (Eq. (3), solid line in Fig. 7) does not show a reduc- 

tion as the flame grows. In the present configuration, for j < 150 sÿ1,

the departure between Eqs. (3) and (9) is significant (’8% at low 

stretch).

The reason why Eq. (9) is not right here is that Eq. (9) uses the 

approximat ion qb ¼ qad. Figure 8 displays the time variation of qb

is the BOMB case for octane and methane. As expected:

� for methane, at small times, curvature effects have no influence

on qb. At later times, curvature effects decrease but confine-

ment effects appear: pressure goes up and so does qb, an effect 

which is ignored by Eq. (9).

� for octane flames the situation is not better: curvature effects 

lead to an increase of qb at small times and confinement effects 

only make it worse at later times.

The standard procedure with such data is to extrapolate the lin- 

ear portion of the curve towards j = 0. As illustrated in [27] (their

Fig. 5), the length of this linear portion is greatly influenced by the 

size of the apparatus, i.e. by confinement. This sensitivity affects 

the precision of the extrapolation procedure, as shown in [29]

using both linear and non-linear methods. However, the consump- 

tion speed sp
c (Eq. (8), open squares in Fig. 7) does not match ex- 

actly the true consump tion flame speed sc (Eq. (3)) at large 

stretch. This can be explained by the difference between Rf and

Rp, especially when the flame is very small. Indeed, replacing Rp

by Rf in Eq. (8) leads to a better result. In practice, sp
c is not used 

in an experime nt because dqb/dt is not easily accessible. Con- 

versely, the consump tion speed sf
c based on the conservation of

the fuel (Eq. (12)) is easy to measure and is unaffected by the con- 

finement as shown in Fig. 7. This expression matches perfectly the 

true consumption flame speed sc.

For methane , in the early developmen t of the flame j > 150 sÿ1,

sf
c does not seem to match well the true consumptio n speed be- 

cause the pressure increase is very small initially. At later times 

(the region in which we are interested and where stretch is smal- 

ler) the accuracy of Eq. (12) is very good.

Note that the simulations of Sections 3.3 and 3.4 were con- 

ducted in a 2D configuration. In a cylindrical flame, the pressure in- 

crease is much stronger than for a spherical flame so that 

confinement effects are overestimat ed in the present simulations.

The first consequence is that for a spherical bomb with the same 

radius R0, the diminution of sL at low stretch would be less pro- 

nounced . Nevertheles s, even with an exaggerated pressure in- 

crease, Eq. (12) is more precise than the classical formulae,

which can only improve the accuracy of the extrapolation method.

The second consequence is that even at moderate flame radii, the 

pressure and temperat ure increase in the fresh gases changes the 

flame speed. This is particularly striking for the methane flame in

Fig. 7b as the normalized consumptio n flame speed exceeds unity 

at j < 70 sÿ1 because the fresh gases are not in the nominal condi- 

tions any more. This peculiarity of the cylindrical flame does not 

affect the conclusio n about the precision of Eq. (12) vs. Eq. (9).

4. Conclusion 

This study addresses the issue of post-pro cessing flame radii,

obtained from spherical flames in bombs, to deduce laminar flame

speeds and Markstein lengths. These experiments raise difficult

questions [27]: when the flame is too small, it is influenced by cur- 

vature and non-unity Lewis number effects; when it is too large, it

is affected by the confinement effect of the bomb. In the present 

work, the limitations of the classical formula used experime ntally 

to construct flame speeds from flame radius measureme nts 

(sL = qb/qu dR/dt) are discussed.

Two expressions for the consump tion speed were derived from 

the conservation equation of the species, without the assumption 

of an infinitely-thin flame front. The first one (Eq. (8)) is the gener- 

alization of the classical formula that accounts for the temporal 
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evolution of the density in the fresh and burnt gases. Because this 

formula requires the mean burnt gases density as an input, a quan- 

tity which cannot be measured in experiments, another expression 

(Eq. (12)) using only the flame radius and the pressure inside the 

bomb (two quantities which are directly measured) is presented 

(existing in the literature [34] but seldom used).

A cylindrical flame computed with DNS was used to evaluate the 

precision of these two expressions for the consumption flame

speed. In a configuration where confinement effects do not exist 

(propagation in an infinite medium where pressure is rigorousl y

constant), Eq. (9) incorrectly predicts the flame speeds for non- 

unity Lewis number (octane) but performs correctly for methane 

because Lewis number is close to unity in this case. In a second 

configuration, corresponding to a bomb, results show that Eq. (9)

incorrectly predicts flame speeds for both octane and methane/air 

flames because the burnt gases density increases with pressure 

(in addition to curvature effects for octane) while Eq. (12) captures

the correct consumption speed. Since Eq. (12) only requires the 

knowledge of R(t) and P(t), it is simple to use experime ntally and 

the present work suggests that it is a good candidate for a more pre- 

cise determination of the flame speeds. The main difficulty of this 

method should be the measureme nt and treatment of the pressure 

signal because the pressure increase in a large bomb may be diffi-

cult to measure accurately and to post process to obtain the pres- 

sure derivative required in Eq. (12).
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