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a b s t r a c t

Measuring the velocities of premixed laminar flames with precision remains a controversial issue in the

combustion community. This paper studies the accuracy of such measurements in two-dimensional slot

burners and shows that while methane/air flame speeds can be measured with reasonable accuracy, the

method may lack precision for other mixtures such as hydrogen/air. Curvature at the flame tip, strain on

the flame sides and local quenching at the flame base can modify local flame speeds and require correc-

tions which are studied using two-dimensional DNS. Numerical simulations also provide stretch, dis-

placement and consumption flame speeds along the flame front. For methane/air flames, DNS show

that the local stretch remains small so that the local consumption speed is very close to the unstretched

premixed flame speed. The only correction needed to correctly predict flame speeds in this case is due to

the finite aspect ratio of the slot used to inject the premixed gases which induces a flow acceleration in

the measurement region (this correction can be evaluated from velocity measurement in the slot section

or from an analytical solution). The method is applied to methane/air flames with and without water

addition and results are compared to experimental data found in the literature. The paper then discusses

the limitations of the slot-burner method to measure flame speeds for other mixtures and shows that it is

not well adapted to mixtures with a Lewis number far from unity, such as hydrogen/air flames.

1. Introduction

Determining the laminar flame speed of premixed flames is one

of the oldest problem in combustion [1–4]. It is not only an aca-

demic problem limited to laminar flames: in most models for tur-

bulent combustion systems [5–8], the laminar premixed flame

speed is an essential ingredient, either to validate the chemical

scheme used in the source terms (in pdf methods [9] for example)

or to provide the speed of the flamelets (in the G equation formu-

lation [6] or in the Coherent Flame model [10] for example). Mea-

suring or calculating laminar flame speeds [1,11–13] however

remains a difficult challenge. Multiple methods can be used to

measure laminar flame speeds: (1) the propagating flame in a tube,

(2) the stagnation-point flame, (3) the spherical unsteady flame, (4)

the heat-flux method and (5) the slot burner.

For all methods, it is possible to use either an experiment or a

simulation. Method 1 seems simple: measuring the position vs.

time of a laminar flame propagating in a tube gives a flame speed

[2–4]. Method 2 uses a stagnation-point flow configuration

[14–16] where the flame is stabilized in a counter flow and velocity

measurements are used to deduce the displacement speed of the

front relative to the flow. In Method 3 a spherical deflagration is

created by igniting a premixed stagnant flow and measuring the

pressure vs. time [4,17,18] or in more recent techniques, the posi-

tion of the flame front vs. time [19–21]. This absolute flame speed

must be corrected by the density ratio of burnt to fresh gases to

provide the laminar flame speed. This technique is commonly used

and works at high pressures [22] as well as for turbulent flames

[23–25]. The heat-flux method (4) is not recent [26] but has lately

been receiving increasing attention [27,28] because it produces a

flat stretch-free flame. Method 5 (the slot burner) is the topic of

this paper and has been used for more than a century [1,29,30].

In this method a simple measurement of the height or of the sur-

face of a flame stabilized over an orifice is sufficient to evaluate

the flame speed.

All methods to measure flame speeds have drawbacks: Method

1 requires planar propagating flames but producing such flames in

the absence of any instability or wall effects is difficult [31,32] and

this method, which works well for detonations, is not often used

for deflagrations. Method 2 requires to measure the velocity field

in a complex stagnation-point flow where the flow velocity is
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strongly varying and sophisticated interpolation methods are

needed to find the flow speed at the flame location and deduce a

flame speed. Moreover, the stagnation-point flame is stretched

and a model for the effects of stretch on flame speed is required

to extrapolate the flame speed at zero stretch. The same problem

arises in Method 3 where the spherical flame is obviously growing

and therefore stretched. Moreover, the precision of flame-speed

measurements in spherical flames is the source of multiple contro-

versies [20,33] because the front may not remain perfectly spher-

ical and is continuously submitted to a varying stretch [34–36].

One great advantage of method 4 is that it does not require a model

for stretch or curvature effects on the flame speed. Its accuracy

basically depends on the precision of temperature measurements.

The slot-burner technique of Method 5 is probably the simplest

one and this paper focuses on its capacities and limitations. First,

methane/air flames stabilized on a slot burner are studied using

three approaches:

� an experimental measurement in the slot-burner set-up (using

two methods to evaluate the flame length),

� a numerical calculation in a one-dimensional configuration

using COSILAB and a full scheme for methane (GRI-Mech 3.0

[37]) which gives a flame speed called s0L ðGRIÞ and

� a two-dimensional calculation of the exact experimental set-up

using a Direct Numerical Simulation (DNS) code [38,39] and a

simplified two-step chemical scheme (called 2SCM2) used in

previous LES studies [40]. The same code is also used to com-

pute the laminar flame speed s0L ð2SCM2Þ for a one-dimensional

flame with 2SCM2 to be used as a reference for two-dimen-

sional cases.

Using these three methods together allows to quantify the sys-

tematic errors associated with the measurement of methane/air

flame speeds using the length of a flame stabilized on a two-dimen-

sional slot. In Section 2 the experimental set-up is presented; then

the methodology and potential sources of errors are discussed in

Section 3. Section 4 presents the numerical tools: 1D code for flames

(COSILAB) and two-dimensionalDNS code. The results are described

first by investigating the flame structure revealed by DNS (Section

5), then evaluating systematic measurement errors using DNS data

(Section 6) and comparing the experimental results with the COSI-

LAB data and literature results (Section 7). All tests are performed

for a methane/air flame at atmospheric pressure (1 bar) and stan-

dard temperature (300 K) over a range of equivalence ratio /, going

from0.8 to1.2 (Section7.1). To illustrate thepotential of themethod,

it is finally used in Section 7.2 to study the influence of water vapor

addition on flame speed for a stoichiometric flame. The last part of

the paper (Section 8) discusses the limitations of the slot-burner

method. Numerous effects (buoyancy, instabilities, non-unity Lewis

number, etc.) thatmay impact the precision of themeasurement are

discussed to try and define the type of flames forwhich the slot-bur-

ner techniquemay be a good choice for flame-speedmeasurements.

A DNS of hydrogen/air flames is used to demonstrate that the slot-

burnermethod is difficult to apply formixtures having a Lewis num-

bers far from unity.

The setup chosen here is a rectangular slot rather than circular

as often found in the literature. The reasons for this are twofold: (1)

in this 2D slot burner, the flame sheets are perfectly planar in the

measurement area and no curvature effect has to be taken into ac-

count (except at the flame tip unlike in the axisymmetric case

where all flame sheets are curved) [29,30] and (2) simulations

are easier as well as velocity measurements.

2. Experimental set-up

The experiment used to measure the flame speed of a methane/

air mixture is presented in Fig. 1. Flow rates are controlled and

measured using Bronkhorst flow meters. The temperature is regu-

lated to ensure a constant value in the plenum. Air is injected tan-

gentially in the plenumwhere it mixes with methane jets. The flow

is then laminarized by an array of small balls, a honeycomb section

and a converging nozzle. The slot used to stabilize the flame is

h = 10 mm wide and L = 100 mm long. The slot is water cooled

and its surface temperature was measured around 350 K.

Example of flames observed along the y axis are given in Fig. 2

for an equivalence ratio / of 0.8 (left) and 1 (right). The flame is

thin, its length is easy to measure and changes strongly when /

varies making flame-speed measurements straightforward. A small

quenched zone is observed at the flame base while its tip exhibits

significant curvature: these effects are quantified in Section 5.

A view of the flame along the x axis is presented in Fig. 3 for / =

0.8: all measurements are performed in the central part of the slot

(rectangular box of Fig. 3), where the flame is almost perfectly two-

dimensional. The side effects on the flame shape at y = 0 and y = L

are discussed in Section 6.

To illustrate the method used to measure the flame length, a

typical image of the flame obtained for a bulk velocity Ub of

1.7 m/s and an equivalence ratio / of 0.8 is given in Fig. 4. This im-

age is used to evaluate the flame length Lf using two methods. In

the first one (TRIANG), the flame is assumed to be a perfect triangle

and its length Lf is evaluated as LTf ¼ 2x where x is the triangle side

length. In the second method (IMAGE), the line corresponding to

the maximum reaction rate is extracted from the flame image

(Fig. 4) and its length LIf is measured using image analysis.

Fig. 1. Slot burner with a square cross section for methane/air flames: (a) cross section of the whole burner, (b) zoom on the outlet section where the flame is stabilized.



3. Principle of method and analysis of systematic errors

The slot burner was one of the first methods used to measure

flame speeds [41–43] and experimentalists found out rather soon

that it could lead to significant error bars. In particular, one of

the early methodologies assumed that the gas velocity profile

was uniform at the outlet of the slot so that the flame angle could

be directly related to the flame speed. This approximation is rarely

valid and a different approach is used here. Consider the central

section of the flame (i.e. y = L/2) where the flow is 2D: the inte-

grated consumption of the flame ðqYF�sLLf Þ balances the fresh gases

flow rate (qYFU h) so that the mean consumption speed �sL averaged

along the flame length is given by:

�sL ¼
Uh

Lf
ð1Þ

where h is the slot width, U the 2D bulk velocity U ¼ 1=h�ð
R h=2

ÿh=2
Uðx; y ¼ L=2ÞdxÞ and Lf the flame length, measured either by

the TRIANG LTf

� �

or IMAGE method LIf

� �

. This equation is exact

but it does not mean that �sL is an exact measurement of the un-

stretched laminar flame speed s0L at the same pressure, temperature

and equivalence ratio: the flame front in the slot-burner configura-

tion may be, in many places, different from an unstretched flame so

that its average flame speed �sL may differ from s0L . Phenomena

which can induce such local effects and lead to values of �sL which

differ from s0L are (a) the quenched region at the flame base near

the lips of the slot, (b) strain effects on the flame side which modify

locally the flame speed and (c) flame curvature at the flame tip. A

second source of error is three-dimensional effects: flame speeds

are measured near the center of the slot (Fig. 3) but at this location

the 2D bulk velocity U ¼ 1=h �
R h=2

ÿh=2
Uðx; y ¼ L=2Þdx is slightly larger

than the mean velocity Ub ¼ 1=ðLhÞ �
R h=2

ÿh=2

R L

0
Uðx; yÞdxdy averaged

over the whole slot section because the flow is slowed down at each

extremity (y = 0 and y = L) of the slot. Only Ub is measured in the

experiment (using a mass-flow meter) so that a model is needed

to derive U from Ub.

Because of the large density ratio between the ambient air and

the burnt gases, the flame stabilized on a slot burner could be influ-

enced by buoyancy effects [44,45]. The ratio of buoyant to advec-

tive forces is the Richardson number Ri = gl/u2, where g is the

acceleration due to gravity, l a characteristic length scale and u

the velocity. For our flame Ri � 10ÿ2 so that it is a priori unlikely

to be buoyancy driven. For an uncontroversial evaluation of buoy-

ancy effects, computations with gravity were also performed and

the measured flame length was found to be the same as without

Fig. 2. Flames stabilized on the slot: picture of the experiment. Transverse views at

y = L/2 for / = 0.8 (left) and 1.0 (right).

Fig. 3. Side view of the flame (photo of the experiment at / = 0.8). The rectangular

box corresponds to the zone where the measurements of flame length are

performed.

Fig. 4. Flame images obtained experimentally superimposed with the flame length detection method (bold line). Center: raw image. Left: TRIANG method (a triangle is fitted

on the flame). Right: image processing is used to measure the flame length Lf.



gravity even though the burnt gases mix differently downstream

the flame front with and without gravity.

Of course, the measurement of the flame length Lf can also be

affected by other uncertainties and great care was used to identify

the isoline of the images which tracks the reaction-rate zone. In a

first step, however, we will concentrate on the systematic errors

(a) to (c) and see if these errors are significant and must be ac-

counted for. If they are, our objective is to see whether Eq. (1)

can be corrected to use �sL as a measure of s0L . To do this, the ratio

s0L=�sL is measured in the DNS and the correction factor for system-

atic errors (a) to (c) is introduced as a factor g1:

g1 ¼
s0L
�sL

ð2Þ

The three-dimensional effects cannot be obtained from the two-

dimensional DNS and will be quantified using velocity field mea-

surements and introduced through a factor g2 = U/Ub so that a prop-

er evaluation of the laminar flame speed will be:

s0L ¼ �sLg1g2 ¼
Uh

Lf
g1g2 ð3Þ

4. Numerical tools

Two codes will be used for this study:

� a laminar flame code (COSILAB) which provides the flame speed

for any chemical scheme. Here the GRI-Mech 3.0 scheme [37]

will be used for CH4–air flames,

� a two-dimensional DNS code which is used to compute the slot-

burner configuration of Fig. 1 with a reduced scheme called

2SCM2. Using GRI-Mech 3.0 in such a code is possible today

[46–48] but would be expensive and is not needed: the flame

is mainly controlled by heat losses to the flame base and by

the flame response to stretch.

The two-step scheme 2SCM2 [40] takes into account six species

(CH4, O2, CO2, CO, H2O and N2) and two reactions:

CH4 þ
3

2
O2 ! COþ 2H2O ð4Þ

COþ
1

2
O2 $ CO2 ð5Þ

The first reaction (4) is irreversible whereas the second one (5) is

reversible and leads to an equilibrium between CO and CO2 in the

burnt gases. The rates of reaction (4) and (5) are respectively given

by:

q1 ¼ A1

qYCH4

WCH4

� �n
CH4
1 qYO2

WO2

� �n
O2
1

exp ÿ
Ea1

RT

� �

ð6Þ

q2 ¼ A2
qYCO

WCO

� �nCO
2 qYO2

WO2

� �n
O2
2

ÿ
qYCO2

WCO2

� �n
CO2
2

2

4

3

5 exp ÿ
Ea2

RT

� �

ð7Þ

where the parameters are provided in Table 1. This scheme was val-

idated vs. GRI-Mech 3.0 for laminar flame speed and burnt gases

adiabatic temperature since stretch may influence the local con-

sumption speed in the slot burner case, additional validations were

carried out: Fig. 5 compares computations with COSILAB of 2SCM2

and GRI-Mech 3.0 in the opposed-jet flame configuration for various

jet velocities. It is clear that the reduced schemes performs well,

matching GRI-Mech 3.0 with a maximum deviation of 4%. Note that

the Lewis number of methane and air remain close to unity so that

differential diffusion effects, which are accounted for in the DNS, re-

main limited. The transport coefficients used for 2SCM2 are sum-

marized in Table 2. The Prandtl number is set to 0.68. The

extension of this study to hydrogen flames is addressed in Section 8.

Using both tools together brings new insight into the flame

structure. COSILAB is useful to provide the most precise estimate

of the premixed laminar flame speed s0L using the most recent

chemical scheme (GRI-Mech 3.0) but cannot be used simply in a

multidimensional configuration. The DNS code on the other hand,

can compute the exact geometry of the experiment using unstruc-

tured meshes. DNS captures the quenched zone near the lips of the

slot where temperature is imposed. It also includes strain and cur-

vature effects present in the real configuration.

5. Effects of stretch and heat losses using DNS: determination

of g1

In a first step, the DNS was run for / = 0.8 and / = 1. For these

cases, the flame speeds obtained in a one-dimensional configuration

using the same mesh are s0L ð2SCM2Þ ¼ 0:27 m=s and 0.372 m/s,

respectively. The DNS results for the stoichiometric flame are dis-

playedon Fig. 6which also shows a viewof thewhole computational

domain and the unstructured mesh. The unstructured grid starts in

the plenum feeding the slot and ends in the atmosphere, far from the

flame zone to avoid effects of boundary conditions. The flame posi-

tion can be isolated from the DNS data and various statistics can be

gathered as a function of the flame abscissa. The simplest analysis

consists in applying to the DNS data, the same methods used for

the experiment (TRIANG and IMAGE). To do this, a fuel mass-frac-

tion isoline is used to identify the flame front: Yf = 0.007 for / = 0.8

and 0.012 for / = 1. This line corresponds almost exactly to the loca-

tion ofmaximumreaction rate in both cases. For the IMAGEmethod,

theflame length is definedas the length of themass-fraction isolevel

where the reaction rate is larger than half its maximum value: this

criterion was devised to exclude the flame base region where the

flame is quenched. Table 3 summarizes the flame speeds measured

Table 1

Rate constants for the 2SCM2 scheme used in the two-dimensional DNS code: the

activation energies are in cal/moles and the preexponential constants in cgs units.

A1 nCH4

1 nO2

1
Ea1 A2 nCO

2 nO2

2 nCO2

2
Ea2

21015 0.9 1.1 34,500 2109 1 0.5 1 12,000
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Fig. 5. Validation of the reduced scheme 2SCM2 vs. GRI-Mech 3.0 for the influence

of stretch on the flame speed. Numerical simulations in the opposed-jet

configuration.

Table 2

Schmidt numbers used in the two-dimensional DNS code.

CH4 CO2 CO O2 H2O N2

0.68 0.98 0.76 0.76 0.6 0.75



using bothmethods TRIANG and IMAGE (Fig. 4) and compares them

to s0L ð2SCM2Þ for an equivalence ratio of 0.8 and 1. The ratio g1 be-
tween s0L ð2SCM2Þ and �sL is always larger than unity indicating that

the average flame speed underestimates the true laminar flame

speed. However, g1 is always close to unity and errors are smaller

than 1.5% for both TRIAN and IMAGE methods, showing that the

slot-burner technique is very accurate in these conditions. A correc-

tion factor g1 of 1.01 will be retained for the TRIANG method and

1.005 for the IMAGE method.

The previous DNS results provide useful global information to

correct measurements but DNS data can also be used to analyse

the local flame structure and verify for example the variations of

the flame speed and flow along the flame front abscissa s, from

the flame base (s = 0) to the flame tip (s = Lf/2 see Fig. 4). Important

quantities for laminar premixed flames are:

� The displacement speed sd ¼ ð~wÿ~uÞ �~n where ~w is the absolute

velocity of the flame front (zero in this case),~u is the flow speed

and ~n is the flame normal (computed as ~n ¼ ~r � T=j~r � Tj). The

local displacement speed is not a direct measure of the laminar

flame speed. A commonly used estimation of the local flame

speed using sd is [8]: sfrom sd
c ¼ sdT=T0 where T is the local flame

temperature and T0 the fresh gas temperature.

� The true consumption speed sc which is given by sc ¼
R

_xFdn
ÿ �

=q0Y
0
F where _xF is the fuel reaction rate, q0 is the fresh

gas density and Y0
F is the fuel mass fraction in the fresh gases.

The integral over _xF is performed along the local flame normal
~n.

� The flame strain term which is the velocity gradient in the flame

plane: @ut/@t where t is the coordinate in the plane tangent to

the flame (i.e. ~n �~t ¼ 0) and ut ¼~u �~t.

� The flame curvature R which can be obtained from the deriva-

tive of the temperature field for example: R ¼ ~r �~n.

� The flame stretch jwhich is the main parameter controlling the

flame structure [36]: j ¼ @ut=@t þ sd=R

All these quantities have been measured on the 2D flame of

Fig. 6 computed by DNS. Figure 7 displays profiles of strain, curva-

ture and stretch along the flame abscissa. All terms are normalized

by the inverse characteristic flame time s0L=d
0
L : significant effects

are expected only when these reduced values (similar to Karlovitz

numbers) reach values close to unity. Note that the flame is

stretched on its sides (positive stretch) but compressed at its tip

(stretch is negative) as expected. Figure 7a shows that the overall

stretch is very small everywhere along this flame. Effects of strain

or curvature are very limited and the flame behaves as if it was un-

stretched. At the flame tip, the stretch becomes very negative lead-

ing to Karlovitz numbers of the order of ÿ10 but over a very

limited region.

Fig. 7b displays the two consumption speeds which can be ex-

tracted from the DNS: sc and sfrom sd
c . The effect of heat losses can

be observed for small values of the flame abscissa: at the flame

base (s = 0), the consumption speed sc is lower but goes up to s0L
rapidly. sc is then almost constant, explaining why the averaged va-

lue of the flame speed is close to s0L . Strong changes in consumption

speeds are observed only at the flame tip s=d0L ¼ 60
ÿ �

where the

compressed front leads to a higher reaction rate. Finally, note that

even though sc and sfrom sd
c are close in the unstretched region, they

differ in the quenched zone (at the flame base) and in the curved

zone (at the flame tip) showing that the approximation used for

sfrom sd
c is valid only for simple flames and should not be used in

more complicated situations.

6. Evaluation of three-dimensional corrections (g2)

Another error factor comes from the fact that the flow issuing

from the slot is not perfectly two-dimensional. At the two extrem-

ities of the slot (y = 0 and y = L in Fig. 1), the velocity goes to zero so

that the flow has to accelerate in the center of the channel where

the mean velocity U (averaged in the transverse direction x in

Fig. 1) is larger than Ub, the speed averaged over the whole slot.

This increased velocity makes the flame slightly longer in the

mid-section of the slot, where the flame length is measured and

leads to a a systematic bias g2 = U/Ub in the evaluation of the flame

speed by Eq. (1).

Assuming that the flow is established at the duct outlet (ie that

the feeding duct is infinitely long), the correction factor g2 can be

estimated analytically using for example the results of Tatsumi

and Yoshimura [49] who computed the established velocity profile

Fig. 6. (a) Total computational domain and mesh. (b) Zoom on white rectangle in image (a) on flame: streamlines, mesh (triangles) and reaction rate field (gray levels).

Table 3

Summary of flame speed values obtained by post processing DNS fields and

comparison with the unstretched laminar flame speed s0L . The same chemical scheme

(2SCM2) is used for all computations.

Case s0L ð2SCM2Þ �sLðTRIANGÞ g1(TRIANG) �sLðIMAGEÞ g1(IMAGE)

/ = 0.8 0.270 0.266 1.016 0.2695 1.0014

/ = 1 0.372 0.368 1.011 0.370 1.007



for a laminar flow in a rectangular duct (which is a good approxi-

mation for the present case). These authors solved the Poisson

equation for the axial velocity field in a rectangular duct using

Legendre polynomia. They show that transverse velocity profiles

(u(x,y) at fixed y) remain parabolic and they provide a simple fit

(valid for a slot aspect ratio aP 3) linking the maximum velocity

in the channel, u(x = 0,y = L/2), as a function of the bulk velocity

Ub and the aspect ratio a of the duct: Ub/u(x = 0,y = L/2) = 2/

3 ÿ 0.4201/a. From this relation, the g2 factor can be obtained

using U = 2/3 � u(x = 0,y = L/2):

gana
2 ¼

1

1ÿ 0:6301=a
ð8Þ

Here, the aspect ratio a is 10 so that gana
2 is 1.067.

To verify this evaluation of g2, Pitot tube measurements were

also performed on the experiment to evaluate the axial velocity

along two lines: y = L/2 and x = 0 (cf. Fig. 1). As expected, two

boundary layers are observed at the extremities y = 0 and y = L of

the slot (Fig. 8b) but the axial velocity profile in the transverse

direction (Fig. 8a) is not perfectly parabolic, indicating that the

flow is not fully established. The correction factor g2 can be evalu-

ated using the velocity measurements of Fig. 8b. For a very long

slot (i.e. large a), the velocity profile at the center of the slot

(y = L/2) is given by the Poiseuille solution:

uPoiðxÞ ¼
3

2
Ub 1ÿ

x

l

� �2
� �

ð9Þ

For a finite A slot like in the present experiment, the Pitot tube mea-

surements provide the axial velocity profile (Fig. 8a) and the correc-

tion factor g2 is simply expressed as

gexp
2 ¼

R h=2

ÿh=2
uðx; y ¼ L=2Þdx

R h=2

ÿh=2 u
PoiðxÞdx

ð10Þ

This evaluation yields gexp
2 ¼ 1:054, which is close to the value ob-

tained analytically (gana
2 ¼ 1:067 using Eq. (8). The experimental va-

lue g2 = 1.054 was kept for the evaluation of s0L .

7. Application

Sections 5 and 6 can be summarized as follows: in the slot bur-

ner of Fig. 1, the unstretched laminar flame speed s0L can be ob-

tained from the averaged flame speed �sL in a transverse plane by

correcting it by two factors g1 and g2: g1 integrates the effect of

quenching at the flame base, strain and curvature effects. It is a

small correction, estimated from a two-dimensional DNS as

g1 = 1.010 for method TRIANG and 1.005 for method IMAGE. g2 is

due to boundary effects at each extremity of the slot which lead

to a flow acceleration at the center of the slot where the flame

shape is visualized and used to measure �sL. This factor depends

only on the aspect ratio of the rectangular duct and is of the order

of g2 = 1.054 for the present channel.

7.1. Methane/air flames

The final result s0L ¼ g1g2
�sL is now used to post process experi-

mental results for a methane/air flame at atmospheric pressure

and temperature (T0 = 300 K). The method used to measure the

flame length is method IMAGE but method TRIANG leads to almost

identical values. Flame speed (s0L ) measurements are compared

Fig. 7. DNS results. Left: stretch (scaled by inverse characteristic flame time s0L=d
0
L ) vs. flame abscissa (scaled by flame thickness d0L ). Right: consumption speed sc (solid line)

and speed obtained from the displacement speed sfrom sd
c ¼ sdT=T0 (dashed line) vs. normalized flame abscissa. Speeds normalized by the laminar flame speed s0L ð2SCM2Þ.

Fig. 8. Axial velocity profiles obtained experimentally. (a) Transverse direction: u(x,y = L/2); (b) longitudinal direction: u(x = 0,y).



over a range of equivalence ratios with various other results: the

numerical output of COSILAB in the same conditions is used as a

reference but other experimental data are also introduced for com-

parison [12,50–52,28,53]. Figure 9 displays flame speed values

from / = 0.8 to 1.2. The only numerical result in Fig. 9 is the COS-

ILAB data obtained with GRI-Mech 3.0. Measurements were per-

formed in the slot-burner set-up using an outlet bulk velocity

Ub = 1.9 m/s. The effect of this velocity was verified by changing

Ub from 1.2 to 1.9 m/s: such changes lead to variations in s0L smaller

than 0.3%. The present measurements agree well with COSILAB re-

sults. They are slightly higher than other experiments for lean

flames (except for the data of Gu et al. [51]) and slightly below

them for rich flames (except for the data of Halter et al. [54]). Con-

sidering the error bars on all flame-speed measurements (see for

example a summary of measured values for methane/air flames

in [28]), it is difficult to determine which method is the best but

the present one obviously gives reasonable results and matches

GRI-Mech 3.0 results very well.

7.2. Methane/air flames with water vapor

This section presents an application of the slot-burner method

to measure flame speeds of methane/air mixtures where the air

contains water vapor. In most practical applications of combustion

in air, significant amount of water vapor may be present in the air

stream, either because of natural atmospheric conditions or

through intentional water addition. For example, in gas turbines

water is added to lower emission levels; in piston engines when

Exhaust Gas Recirculation (EGR) is used, water present in the com-

bustion products modifies the flame speed by changing the heat

capacity of the mixture, but also its kinetics. Measuring these ef-

fects is of interest and the slot burner methodology was applied

to the combustion of methane in air containing water vapor. Since

the Lewis number of water vapor is close to unity, the local effects

of stretch and curvature are expected to match those of the meth-

ane/dry-air flame. Consequently, the correction factor g1 derived in

Section 5 is retained. The factor g2 solely depending on the burner

geometry is also kept constant. The water-vapor content is quanti-

fied by the specific humidity sH, defined as the ratio of the mass of

vapor to the total mass of humid air (air plus water). At a given

temperature, the specific humidity is bounded by the saturation

of water in air: typically, at T = 300 K, the saturation specific

humidity is ssatH ¼ 21:8 g=kg and at T = 330 K, ssatH ¼ 112 g=kg. The

measurements of laminar flame speed s0L at stoichiometry for three

fresh-gases temperature are presented in Fig. 10, together with

numerical simulations using COSILAB and GRI-Mech 3.0. The two

lower temperatures correspond to operating conditions of an air-

breathing engine in standard to extreme conditions. Because

saturation occurs for smaller sH values at lower temperatures, only

a limited amount of water can be added to air at 300 K and the

flame speed is mildly affected: s0L is reduced by less than 15%. How-

ever, at 330 K s0L can be divided by two, which may have a signifi-

cant impact on the operation of the engine. For these two

conditions, the measurements closely match the numerical simula-

tions of COSILAB. For engines that may have a much higher inlet

temperature together with direct water addition or EGR, a numer-

ical simulation at 370 K shows that the flame speed can be reduced

by 90%. These effects are important and must be incorporated in

models used for combustion in piston engines and gas turbines.

8. Extension to other flames and limitations

The previous sections have shown that the slot burner was a

reasonably accurate and inexpensive technique to measure flame

speeds for methane/air mixtures. Similar methods are routinely

used in the literature to measure flame speeds and an interesting

question that came out during this work is the validity of the

approach in a more general framework: can this method be used

for all mixtures? The answer is negative because of multiple

factors:

1. Very slow flames will be submitted to buoyancy effects.

2. Slot flames are also known to be highly unstable, exhibiting

strong pulsations. In most cases, these pulsations are due to

acoustic coupling mechanisms between the flame and the ple-

num [55–57].

3. Flames with non-unity Lewis number are strongly affected by

preferential diffusion where the reaction zone is curved. For a

slot flame, both the tip and the shoulder are curved potentially

affecting the average flame speed and leading to non-unity val-

ues for the correction factor g1 defined in Eq. (2). This effect is

actually even worse for conical flames because these are curved

everywhere.

4. The method works only for steady flames: any instability or

fluctuation will affect precision. Thermodiffusive effects or, in

the case of very fast flames, turbulence might lead to oscillating

flames and make flame-speed measurements impossible.

5. Fast flames may flashback in the injection tube, especially if the

flame is submitted to acoustic oscillations.

During this work, the influence of some of these effects was

investigated either experimentally or using simulations.
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1. Simulations with gravity (and even negative gravity corre-

sponding to an upside-down flame) were performed for the

methane/air flame at / = 0.8. The hot gases plume was affected

by gravity but the length of the reaction zone was not. This may

change for very slow flames, especially near the flammability

limits.

2. Strong oscillations at the frequency of the Helmholtz mode of

the plenum (around 60 Hz) were present when the apparatus

was first fired. Measurements were impossible with such insta-

bilities. However, the oscillations were easily damped by

increasing the acoustic dissipation in the system: here, using

a longer exhaust pipe (therefore increasing the dissipation of

the Helmholtz mode) was sufficient to damp all acoustic activ-

ity and ensure that the flame remains perfectly stable.

3. The effect of non-unity Lewis number was thought to be critical

so it was decided to conduct simulations of hydrogen/air

flames. A DNS at 300 K and 1 bar was performed with a complex

chemical scheme (six species: H2, O2, OH, H, O, H2O) and seven

reactions [58]. The slot width, h, is the same as for the methane

flames. Two equivalence ratios were tested: / = 0.6 and 0.8. The

objective is the determination of the correction factor g1 which

was shown to be very close to unity for methane/air flames.

Incidentally, because hydrogen flames have larger flame speed,

the fresh-gases velocity is significantly larger (for a flame of

roughly 2 cm height, U = 3.8 m/s at / = 0.6 and U = 6 m/s at /

= 0.8) so that these simulations also address the issue of flame

steadiness for fast flames. For these hydrogen/air flames, the

tip of the flames kept oscillating (Fig. 11), leading to variations

of g1. At / = 0.8 the correction factor oscillated between ÿ1.3%

and +1.4% and at / = 0.6, between ÿ1.6% and ÿ0.5%. This raises

doubts on the applicability of the technique for such flames.

Furthermore, flame tip opening was observed at / = 0.6

(Fig. 11a), which is consistent with the negative average correc-

tion factor around ÿ1%.

4. The simulation of the hydrogen flame at / = 0.8 ultimately

failed because of flashback: one shoulder of the flame would

enter the inlet tube and propagate upstream.

Slot burner experimental measurements of hydrogen/air flames

have been reported [59,60] and obviously, there are methods to

control flashback, average small oscillations of the flame tip or

extrapolate the flame position when the tip is opening but there

is little doubt that the accuracy of the technique becomes ques-

tionable in such flames.

9. Conclusion

Two-dimensional slot burners are an interesting configuration

to measure laminar flame speeds because they allow to generate

an uncurved, unstrained, steady flame over a large region. In this

paper, sources of errors in the measurement of laminar flame

speeds using such a setup have been evaluated using a combina-

tion of experimental and numerical (1D and 2D DNS) tools for a

methane/air flame. A global analysis of two-dimensional DNS data

show that the corrections due to quenching at the flame base,

strain on the flame sides and curvature at the tip are almost negli-

gible (of the order of 1%). Local analysis of DNS results confirm that

most of the flame sheet is uncurved and unstrained, making it a

proper prototype for flame-speed measurements. Results also

prove that for methane/air flames, the only significant correction

needed in a 2D slot-burner set-up comes from the finite aspect

ratio of the slot (a = 10 in the present study) used to stabilize the

flame: it leads to flow acceleration in the mid-part of the slot

and a correction of the order of 5% for the present configuration.

If the slot feeding the flame is sufficiently long, a comparison with

experimental velocity measurements showed that the analytical

expression of Tatsumi and Yoshimura [49] provides a very good

evaluation of this correction factor. Using these corrections, the

methane/air flame speed measured in the experiment matches

the value computed by COSILAB and the GRI-Mech 3.0 scheme as

well as most other experimental data for equivalence ratios going

from 0.8 to 1.2. The methodology was also used to study the influ-

ence of water vapor addition on flame propagation. The results

match the predictions of numerical simulations with GRI-Mech

3.0 and show that water addition has a first-order effect on pre-

mixed laminar flame speeds. Even though present results show

that the slot burner is well adapted to measure methane/air flame

speeds in a certain range and for certain fuels, it can not be ex-

tended without significant difficulties to measure all flame speeds

for all fuels: DNS performed for H2/air fuels revealed much larger

error margins for these fast, thermodiffusively unstable flames. In

the quest for the ultimate method to measure flame speeds in all

cases, the slot burner will not be a good candidate. It is however

a good method to measure flame speeds for fuels like methane

and to evaluate the effects of limited variations in composition

on flame speeds (adding H2, H2O or bio-fuels for example).
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