878 research outputs found

    Senegalese Sufism: What Would Rumi Say?

    Get PDF

    Thermal Dileptons from Coarse-Grained Transport as Fireball Probes at SIS Energies

    Full text link
    Utilizing a coarse-graining method to convert hadronic transport simulations of Au+Au collisions at SIS energies into local temperature, baryon and pion densities, we compute the pertinent radiation of thermal dileptons based on an in-medium ρ\rho spectral function that describes available spectra at ultrarelativistic collision energies. In particular, we analyze how far the resulting yields and slopes of the invariant-mass spectra can probe the lifetime and temperatures of the fireball. We find that dilepton radiation sets in after the initial overlap phase of the colliding nuclei of about 7 fm/c, and lasts for about 13 fm/c. This duration closely coincides with the development of the transverse collectivity of the baryons, thus establishing a direct correlation between hadronic collective effects and thermal EM radiation, and supporting a near local equilibration of the system. This fireball "lifetime" is substantially smaller than the typical 20-30 fm/c that naive considerations of the density evolution alone would suggest. We furthermore find that the total dilepton yield radiated into the invariant-mass window of M=0.30.7M=0.3-0.7 GeV/c2c^{2}, normalized to the number of charged pions, follows a relation to the lifetime found earlier in the (ultra-) relativistic regime of heavy-ion collisions, and thus corroborates the versatility of this tool. The spectral slopes of the invariant-mass spectra above the ϕ\phi mass provide a thermometer of the hottest phases of the collision, and agree well with the maximal temperatures extracted from the coarse-grained hadron spectra.Comment: 9 pages, 6 figures; v2: extended discussion, matches the version accepted for publicatio

    Policy framework for dairy development in Senegal

    Get PDF

    Cadre de politique pour le développement de la filière laitière au Sénégal

    Get PDF

    Model Continuity in Discrete Event Simulation: A Framework for Model-Driven Development of Simulation Models.

    Get PDF
    Most of the well known modeling and simulation methodologies state the importance of conceptual modeling in simulation studies and they suggest the use of conceptual models during the simulation model development process. However, only a limited number of methodologies refers to howto move from a conceptual model to an executable simulation model. Besides, existing modeling and simulation methodologies do not typically provide a formal method for model transformations between the models in different stages of the development process. Hence, in the current M&S practice, model continuity is usually not fulfilled. In this article, a model driven development framework for modeling and simulation is in order to bridge the gap between different stages of a simulation study and to obtain model continuity. The applicability of the framework is illustrated with a prototype modeling environment and a case study in the discrete event simulation domain
    corecore