46 research outputs found

    Exclusion Principle Repulsion Effects on the Covalent Bond Beyond the Born-Oppenheimer Approximation

    Get PDF
    The changes in the covalent bond of the hydrogen molecule limited in the space by a spherical hard boundary are studied. The sphere is moved along an axis parallel or orthogonal to the molecular axis. The diffusion Monte Carlo approach is used to solve the Schrödinger equation with the relevant boundary conditions and to evaluate the changes in the bond energy versus the location of the sphere. The vertical and lateral quantum forces exerted on the sphere are evaluated by calculating the energy derivative versus the distances to the sphere. The results show that the quantum forces present an important dependence with the distance and vanish rapidly as the separation between the sphere and the molecule increases. In the limiting case the molecular bond becomes broken due to the electronic depletion induced in the covalent bond. An application of this study is the modelisation of the forces exerted on the passivated cantilever of an Atomic Force Microscope probing the electron cloud in the contact mode in the Pauli exclusión regime

    Angular versus radial correlation effects on momentum distributions of light two-electron ions

    Full text link
    We investigate different correlation mechanisms for two-electron systems and compare their respective effects on various electron distributions. The simplicity of the wave functions used allows for the derivation of closed-form analytical expressions for all electron distributions. Among other features, it is shown that angular and radial correlation mechanisms have opposite effects on Compton profiles at small momenta.Comment: 22 pages, 5 figures, 3 tabl

    Radiosensitization of DNA in presence of Pt(II)-based compounds

    Get PDF
    X-ray irradiation of plasmid DNA in presence of platinum (II)-based compounds was carried out in order to assess the radiosensitization capabilities of these drugs. In present investigations pBR322 plasmid DNA was used to monitor effectiveness of chosen compounds in inducing strand breaks. Samples were incubated in presence of potential radiosensitisers: platinum (II) bromide and cis-diamminedibromoplatinum (II). The results were examined against a common cancer chemotherapy drug cis-diamminedichloroplatinum (II). It was found that platinum (II) bromide can greatly increase the levels of single- and double-strand break formation observed in the irradiated samples with respect to the samples containing platinum as a radiosensitizer only, possessing very little chemotherapeutic activity. The suggested drugs exhibit much higher level of radiosensitivity than widely used cisplatin and thus may be good candidates for cancer treatment

    Radio- and photosensitization of DNA with compounds containing platinum and bromine atoms

    Get PDF
    Irradiations of plasmid DNA by both X-rays and UV light in the presence and absence of compounds containing platinum and bromine atoms were performed in order to asses the sensitization potential of these compounds. Plasmid DNA pBR322 was incubated with platinum (II) bromide, hydrogen hexabromoplatinate (IV), hydrogen hexahydroxyplatinate (IV) and sodium hexahydroxyplatinate (IV). Incubation was followed by X-ray or UV irradiations. It was found that amongst the sensitizers tested, during irradiations carried out in the presence of platinum (II) bromide, the highest levels of double strand breaks formation upon X-ray treatment were recorded. In contrast much less damage was induced by UV light. Data presented here suggests that this compound may be a promising radiosensitizer for cancer treatment
    corecore