344 research outputs found

    How Much Do Focal Infarcts Distort White Matter Lesions and Global Cerebral Atrophy Measures?

    Get PDF
    BACKGROUND: White matter lesions (WML) and brain atrophy are important biomarkers in stroke and dementia. Stroke lesions, either acute or old, symptomatic or silent, are common in older people. Such stroke lesions can have similar signals to WML and cerebrospinal fluid (CSF) on magnetic resonance (MR) images, and may be classified accidentally as WML or CSF by MR image processing algorithms, distorting WML and brain atrophy volume from the true volume. We evaluated the effect that acute or old stroke lesions at baseline, and new stroke lesions occurring during follow-up, could have on measurement of WML volume, cerebral atrophy and their longitudinal progression. METHODS: We used MR imaging data from patients who had originally presented with acute lacunar or minor cortical ischaemic stroke symptoms, recruited prospectively, who were scanned at baseline and about 3 years later. We measured WML and CSF volumes (ml) semi-automatically. We manually outlined the acute index stroke lesion (ISL), any old stroke lesions present at baseline, and new lesions appearing de novo during follow-up. We compared baseline and follow-up WML volume, cerebral atrophy and their longitudinal progression excluding and including the acute ISL, old and de novo stroke lesions. A non-parametric test (Wilcoxon's signed rank test) was used to compare the effects. RESULTS: Among 46 patients (mean age 72 years), 33 had an ISL visible on MR imaging (median volume 2.05 ml, IQR 0.88–8.88) and 7 of the 33 had old lacunes at baseline: WML volume was 8.54 ml (IQR 5.86–15.80) excluding versus 10.98 ml (IQR 6.91–24.86) including ISL (p < 0.001). At follow-up, median 39 months later (IQR 30–45), 3 patients had a de novo stroke lesion; total stroke lesion volume had decreased in 11 and increased in 22 patients: WML volume was 12.17 ml (IQR 8.54–19.86) excluding versus 14.79 ml (IQR 10.02–38.03) including total stroke lesions (p < 0.001). Including/excluding lacunes at baseline or follow-up also made small differences. Twenty-two of the 33 patients had tissue loss due to stroke lesions between baseline and follow-up, resulting in a net median brain tissue volume loss (i.e. atrophy) during follow-up of 24.49 ml (IQR 12.87–54.01) excluding versus 24.61 ml (IQR 15.54–54.04) including tissue loss due to stroke lesions (p < 0.001). Including stroke lesions in the WML volume added substantial noise, reduced statistical power, and thus increased sample size estimated for a clinical trial. CONCLUSIONS: Failure to exclude even small stroke lesions distorts WML volume, cerebral atrophy and their longitudinal progression measurements. This has important implications for design and sample size calculations for observational studies and randomised trials using WML volume, WML progression or brain atrophy as outcome measures. Improved methods of discriminating between stroke lesions and WML, and between tissue loss due to stroke lesions and true brain atrophy are required

    Risk, Clinical Course, and Outcome of Ischemic Stroke in Patients Hospitalized With COVID-19: A Multicenter Cohort Study

    Get PDF
    BACKGROUND AND PURPOSE: The frequency of ischemic stroke in patients with coronavirus disease 2019 (COVID-19) varies in the current literature, and risk factors are unknown. We assessed the incidence, risk factors, and outcomes of acute ischemic stroke in hospitalized patients with COVID-19. METHODS: We included patients with a laboratory-confirmed SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) infection admitted in 16 Dutch hospitals participating in the international CAPACITY-COVID registry between March 1 and August 1, 2020. Patients were screened for the occurrence of acute ischemic stroke. We calculated the cumulative incidence of ischemic stroke and compared risk factors, cardiovascular complications, and in-hospital mortality in patients with and without ischemic stroke. RESULTS: We included 2147 patients with COVID-19, of whom 586 (27.3%) needed treatment at an intensive care unit. Thirty-eight patients (1.8%) had an ischemic stroke. Patients with stroke were older but did not differ in sex or cardiovascular risk factors. Median time between the onset of COVID-19 symptoms and diagnosis of stroke was 2 weeks. The incidence of ischemic stroke was higher among patients who were treated at an intensive care unit (16/586; 2.7% versus nonintensive care unit, 22/1561; 1.4%; P=0.039). Pulmonary embolism was more common in patients with (8/38; 21.1%) than in those without stroke (160/2109; 7.6%; adjusted risk ratio, 2.08 [95% CI, 1.52–2.84]). Twenty-seven patients with ischemic stroke (71.1%) died during admission or were functionally dependent at discharge. Patients with ischemic stroke were at a higher risk of in-hospital mortality (adjusted risk ratio, 1.56 [95% CI, 1.13–2.15]) than patients without stroke. CONCLUSIONS: In this multicenter cohort study, the cumulative incidence of acute ischemic stroke in hospitalized patients with COVID-19 was ≈2%, with a higher risk in patients treated at an intensive care unit. The majority of stroke patients had a poor outcome. The association between ischemic stroke and pulmonary embolism warrants further investigation

    Silent cerebral infarct after cardiac catheterization as detected by diffusion weighted Magnetic Resonance Imaging: a randomized comparison of radial and femoral arterial approaches

    Get PDF
    Background and objective: Cerebral microembolism detected by transcranial Doppler (TCD) occurs systematically during cardiac catheterization, but its clinical relevance, remains unknown. Studies suggest that asymptomatic embolic cerebral infarction detectable by diffusion-weighted (DW) MRI might exist after percutaneous cardiac interventions with a frequency as high as 15 to 22% of cases. We have set up, for the first time, a prospective multicenter trial to assess the rate of silent cerebral infarction after cardiac catheterization and to compare the impact of the arterial access site, comparing radial and femoral access, on this phenomenon. Study design: This prospective study will be performed in patients with severe aortic valve stenosis. To assess the occurrence of cerebral infarction, all patients will undergo cerebral DW-MRI and neurological assessment within 24 hours before, and 48 hours after cardiac catheterization and retrograde catheterization of the aortic valve. Randomization for the access site will be performed before coronary angiography. A subgroup will be monitored by transcranial power M-mode Doppler during cardiac catheterization to observe cerebral blood flow and track emboli. Neuropsychological tests will also be recorded in a subgroup of patients before and after the interventional procedures to assess the impact of silent brain injury on potential cognitive decline. The primary end-point of the study is a direct comparison of ischemic cerebral lesions as detected by serial cerebral DW-MRI between patients explored by radial access and patients explored by femoral access. Secondary end-points include comparison of neuropsychological test performance and number of microembolism signals observed in the two groups. Implications: Using serial DW-MRI, silent cerebral infarction rate will be defined and the potential influence of vascular access site will be evaluated. Silent cerebral infarction might be a major concern during cardiac catheterization and its potential relationship to cognitive decline needs to be assessed. Study registration: The SCIPION study is registered through National Institutes of Health-sponsored clinical trials registry and has been assigned the Identifier: NCT 00329979

    The Rotterdam Scan Study: design and update up to 2012

    Get PDF
    Neuroimaging plays an important role in etiologic research on neurological diseases in the elderly. The Rotterdam Scan Study was initiated as part of the ongoing Rotterdam Study with the aim to unravel causes of neurological disease by performing neuroimaging in a population-based longitudinal setting. In 1995 and 1999 random subsets of the Rotterdam Study underwent neuroimaging, whereas from 2005 onwards MRI has been implemented into the core protocol of the Rotterdam Study. In this paper, we discuss the background and rationale of the Rotterdam Scan Study. We also describe the imaging protocol and post-processing techniques, and highlight the main findings to date. Finally, we make recommendations for future research, which will also be the main focus of investigation in the Rotterdam Scan Study

    Mechanical compression attenuates normal human bronchial epithelial wound healing

    Get PDF
    Background: Airway narrowing associated with chronic asthma results in the transmission of injurious compressive forces to the bronchial epithelium and promotes the release of pro-inflammatory mediators and the denudation of the bronchial epithelium. While the individual effects of compression or denudation are well characterized, there is no data to elucidate how these cells respond to the application of mechanical compression in the presence of a compromised epithelial layer. Methods: Accordingly, differentiated normal human bronchial epithelial cells were exposed to one of four conditions: 1) unperturbed control cells, 2) single scrape wound only, 3) static compression (6 hours of 30 cmH(2)O), and 4) 6 hours of static compression after a scrape wound. Following treatment, wound closure rate was recorded, media was assayed for mediator content and the cytoskeletal network was fluorescently labeled. Results: We found that mechanical compression and scrape injury increase TGF-beta 2 and endothelin-1 secretion, while EGF content in the media is attenuated with both injury modes. The application of compression after a pre-existing scrape wound augmented these observations, and also decreased PGE(2) media content. Compression stimulated depolymerization of the actin cytoskeleton and significantly attenuated wound healing. Closure rate was partially restored with the addition of exogenous PGE(2), but not EGF. Conclusion: Our results suggest that mechanical compression reduces the capacity of the bronchial epithelium to close wounds, and is, in part, mediated by PGE(2) and a compromised cytoskeleton
    corecore