114 research outputs found

    The Genetics and Genomics of Virus Resistance in Maize

    Get PDF
    Viruses cause significant diseases on maize worldwide. Intensive agronomic practices, changes in vector distribution, and the introduction of vectors and viruses into new areas can result in emerging disease problems. Because deployment of resistant hybrids and cultivars is considered to be both economically viable and environmentally sustainable, genes and quantitative trait loci for most economically important virus diseases have been identified. Examination of multiple studies indicates the importance of regions of maize chromosomes 2, 3, 6, and 10 in virus resistance. An understanding of the molecular basis of virus resistance in maize is beginning to emerge, and two genes conferring resistance to sugarcane mosaic virus, Scmv1 and Scmv2, have been cloned and characterized. Recent studies provide hints of other pathways and genes critical to virus resistance in maize, but further work is required to determine the roles of these in virus susceptibility and resistance. This research will be facilitated by rapidly advancing technologies for functional analysis of genes in maize

    Glucocorticoid Effects on the Programming of AT1b Angiotensin Receptor Gene Methylation and Expression in the Rat

    Get PDF
    Adverse events in pregnancy may ‘programme’ offspring for the later development of cardiovascular disease and hypertension. Previously, using a rodent model of programmed hypertension we have demonstrated the role of the renin-angiotensin system in this process. More recently we showed that a maternal low protein diet resulted in undermethylation of the At1b angiotensin receptor promoter and the early overexpression of this gene in the adrenal of offspring. Here, we investigate the hypothesis that maternal glucocorticoid modulates this effect on fetal DNA methylation and gene expression. We investigated whether treatment of rat dams with the 11β-hydroxylase inhibitor metyrapone, could prevent the epigenetic and gene expression changes we observed. Offspring of mothers subjected to a low protein diet in pregnancy showed reduced adrenal Agtr1b methylation and increased adrenal gene expression as we observed previously. Treatment of mothers with metyrapone for the first 14 days of pregnancy reversed these changes and prevented the appearance of hypertension in the offspring at 4 weeks of age. As a control for non-specific effects of programmed hypertension we studied offspring of mothers treated with dexamethasone from day 15 of pregnancy and showed that, whilst they had raised blood pressure, they failed to show any evidence of Agtr1b methylation or increase in gene expression. We conclude that maternal glucocorticoid in early pregnancy may induce changes in methylation and expression of the Agtr1b gene as these are clearly reversed by an 11 beta-hydroxylase inhibitor. However in later pregnancy a converse effect with dexamethasone could not be demonstrated and this may reflect either an alternative mechanism of this glucocorticoid or a stage-specific influence

    Breeding systems in Tolpis (Asteraceae) in the Macaronesian islands: the Azores, Madeira and the Canaries

    Get PDF
    Plants on oceanic islands often originate from self-compatible (SC) colonizers capable of seed set by self fertilization. This fact is supported by empirical studies, and is rooted in the hypothesis that one (or few) individuals could find a sexual population, whereas two or more would be required if the colonizers were self-incompatible (SI). However, a SC colonizer would have lower heterozygosity than SI colonizers, which could limit radiation and diver sification of lineages following establishment. Limited evidence suggests that several species-rich island lineages in the family Asteraceae originated from SI colonizers with some ‘‘leakiness’’ (pseudo-self-compatibility, PSC) such that some self-seed could be produced. This study of Tolpis (Asteraceae) in Macaronesia provides first reports of the breeding system in species from the Azores and Madeira, and additional insights into variation in Canary Islands. Tolpis from the Azores and Madeira are predominately SI but with PSC. This study suggests that the breeding sys tems of the ancestors were either PSC, possibly from a single colonizer, or from SI colonizers by multiple dis seminules either from a single or multiple dispersals. Long distance colonists capable of PSC combine the advantages of reproductive assurance (via selfing) in the establishment of sexual populations from even a single colonizer with the higher heterozygosity resulting from its origin from an outcrossed source population. Evolution of Tolpis on the Canaries and Madeira has generated diversity in breeding systems, including the origin of SC. Macaronesian Tolpis is an excellent system for studying breeding system evolution in a small, diverse lineage.info:eu-repo/semantics/publishedVersio

    Adult-Onset Obesity Reveals Prenatal Programming of Glucose-Insulin Sensitivity in Male Sheep Nutrient Restricted during Late Gestation

    Get PDF
    BACKGROUND: Obesity invokes a range of metabolic disturbances, but the transition from a poor to excessive nutritional environment may exacerbate adult metabolic dysfunction. The current study investigated global maternal nutrient restriction during early or late gestation on glucose tolerance and insulin sensitivity in the adult offspring when lean and obese. METHODS/PRINCIPAL FINDINGS: Pregnant sheep received adequate (1.0M; CE, n = 6) or energy restricted (0.7M) diet during early (1-65 days; LEE, n = 6) or late (65-128 days; LEL, n = 7) gestation (term approximately 147 days). Subsequent offspring remained on pasture until 1.5 years when all received glucose and insulin tolerance tests (GTT & ITT) and body composition determination by dual energy x-ray absorptiometry (DXA). All animals were then exposed to an obesogenic environment for 6-7 months and all protocols repeated. Prenatal dietary treatment had no effect on birth weight or on metabolic endpoints when animals were 'lean' (1.5 years). Obesity revealed generalised metabolic 'inflexibility' and insulin resistance; characterised by blunted excursions of plasma NEFA and increased insulin(AUC) (from 133 to 341 [s.e.d. 26] ng.ml(-1).120 mins) during a GTT, respectively. For LEL vs. CE, the peak in plasma insulin when obese was greater (7.8 vs. 4.7 [s.e.d. 1.1] ng.ml(-1)) and was exacerbated by offspring sex (i.e. 9.8 vs. 4.4 [s.e.d. 1.16] ng.ml(-1); LEL male vs. CE male, respectively). Acquisition of obesity also significantly influenced the plasma lipid and protein profile to suggest, overall, greater net lipogenesis and reduced protein metabolism. CONCLUSIONS: This study indicates generalised metabolic dysfunction with adult-onset obesity which also exacerbates and 'reveals' programming of glucose-insulin sensitivity in male offspring prenatally exposed to maternal undernutrition during late gestation. Taken together, the data suggest that metabolic function appears little compromised in young prenatally 'programmed' animals so long as weight is adequately controlled. Nutritional excess in adulthood exacerbates any programmed phenotype, indicating greater vigilance over weight control is required for those individuals exposed to nutritional thrift during gestation

    Distinct Genetic Architectures for Male and Female Inflorescence Traits of Maize

    Get PDF
    We compared the genetic architecture of thirteen maize morphological traits in a large population of recombinant inbred lines. Four traits from the male inflorescence (tassel) and three traits from the female inflorescence (ear) were measured and studied using linkage and genome-wide association analyses and compared to three flowering and three leaf traits previously studied in the same population. Inflorescence loci have larger effects than flowering and leaf loci, and ear effects are larger than tassel effects. Ear trait models also have lower predictive ability than tassel, flowering, or leaf trait models. Pleiotropic loci were identified that control elongation of ear and tassel, consistent with their common developmental origin. For these pleiotropic loci, the ear effects are larger than tassel effects even though the same causal polymorphisms are likely involved. This implies that the observed differences in genetic architecture are not due to distinct features of the underlying polymorphisms. Our results support the hypothesis that genetic architecture is a function of trait stability over evolutionary time, since the traits that changed most during the relatively recent domestication of maize have the largest effects

    Cinaciguat prevents the development of pathologic hypertrophy in a rat model of left ventricular pressure overload

    Get PDF
    Pathologic myocardial hypertrophy develops when the heart is chronically pressure-overloaded. Elevated intracellular cGMP-levels have been reported to prevent the development of pathologic myocardial hypertrophy, therefore we investigated the effects of chronic activation of the cGMP producing enzyme, soluble guanylate cyclase by Cinaciguat in a rat model of pressure overload-induced cardiac hypertrophy. Abdominal aortic banding (AAB) was used to evoke pressure overload-induced cardiac hypertrophy in male Wistar rats. Sham operated animals served as controls. Experimental and control groups were treated with 10 mg/kg/day Cinaciguat (Cin) or placebo (Co) p.o. for six weeks, respectively. Pathologic myocardial hypertrophy was present in the AABCo group following 6 weeks of pressure overload of the heart, evidenced by increased relative heart weight, average cardiomyocyte diameter, collagen content and apoptosis. Cinaciguat did not significantly alter blood pressure, but effectively attenuated all features of pathologic myocardial hypertrophy, and normalized functional changes, such as the increase in contractility following AAB. Our results demonstrate that chronic enhancement of cGMP signalling by pharmacological activation of sGC might be a novel therapeutic approach in the prevention of pathologic myocardial hypertrophy

    Making sense of the evolving nature of depression narratives and their inherent conflicts

    Get PDF
    Originally a psychiatric diagnosis fashioned by Western psychiatry in the 20th Century, depression evolved to encompass varying lineages of discourse and care. This article elucidates some of the current challenges – as well as emerging discourses – influencing the category of depression. Depression-like experiences are shaped by (at times conflicting) subjectivities, claims to knowledge, material realities, social contexts and access to resources. With no unified understanding of the category of ‘depression’ available, lay people, social and neuro scientists, GPs, psychiatrists, talking therapists and pharmaceutical companies all attempt to shape narratives of depression. The current paper focuses on patient narratives about depression – in the context of these wider debates – to better elucidate the ways in which depression discourses are publically developing along varying lines. In conclusion, the paper suggests that we could better conceptualise the resulting ‘depression(s)’ with concepts such as ‘society of mind’ and notions of subjectivity unbounded by individuals

    Deep RNA Sequencing Reveals Novel Cardiac Transcriptomic Signatures for Physiological and Pathological Hypertrophy

    Get PDF
    Although both physiological hypertrophy (PHH) and pathological hypertrophy (PAH) of the heart have similar morphological appearances, only PAH leads to fatal heart failure. In the present study, we used RNA sequencing (RNA-Seq) to determine the transcriptomic signatures for both PHH and PAH. Approximately 13–20 million reads were obtained for both models, among which PAH showed more differentially expressed genes (DEGs) (2,041) than PHH (245). The expression of 417 genes was barely detectable in the normal heart but was suddenly activated in PAH. Among them, Foxm1 and Plk1 are of particular interest, since Ingenuity Pathway Analysis (IPA) using DEGs and upstream motif analysis showed that they are essential hub proteins that regulate the expression of downstream proteins associated with PAH. Meanwhile, 52 genes related to collagen, chemokines, and actin showed opposite expression patterns between PHH and PAH. MAZ-binding motifs were enriched in the upstream region of the participating genes. Alternative splicing (AS) of exon variants was also examined using RNA-Seq data for PAH and PHH. We found 317 and 196 exon inclusions and exon exclusions, respectively, for PAH, and 242 and 172 exon inclusions and exclusions, respectively for PHH. The AS pattern was mostly related to gains or losses of domains, changes in activity, and localization of the encoded proteins. The splicing variants of 8 genes (i.e., Fhl1, Rcan1, Ndrg2, Synpo, Ttll1, Cxxc5, Egfl7, and Tmpo) were experimentally confirmed. Multilateral pathway analysis showed that the patterns of quantitative (DEG) and qualitative (AS) changes differ depending on the type of pathway in PAH and PHH. One of the most significant changes in PHH is the severe downregulation of autoimmune pathways accompanied by significant AS. These findings revealed the unique transcriptomic signatures of PAH and PHH and also provided a more comprehensive understanding at both the quantitative and qualitative levels

    Heritable Epigenetic Variation among Maize Inbreds

    Get PDF
    Epigenetic variation describes heritable differences that are not attributable to changes in DNA sequence. There is the potential for pure epigenetic variation that occurs in the absence of any genetic change or for more complex situations that involve both genetic and epigenetic differences. Methylation of cytosine residues provides one mechanism for the inheritance of epigenetic information. A genome-wide profiling of DNA methylation in two different genotypes of Zea mays (ssp. mays), an organism with a complex genome of interspersed genes and repetitive elements, allowed the identification and characterization of examples of natural epigenetic variation. The distribution of DNA methylation was profiled using immunoprecipitation of methylated DNA followed by hybridization to a high-density tiling microarray. The comparison of the DNA methylation levels in the two genotypes, B73 and Mo17, allowed for the identification of approximately 700 differentially methylated regions (DMRs). Several of these DMRs occur in genomic regions that are apparently identical by descent in B73 and Mo17 suggesting that they may be examples of pure epigenetic variation. The methylation levels of the DMRs were further studied in a panel of near-isogenic lines to evaluate the stable inheritance of the methylation levels and to assess the contribution of cis- and trans- acting information to natural epigenetic variation. The majority of DMRs that occur in genomic regions without genetic variation are controlled by cis-acting differences and exhibit relatively stable inheritance. This study provides evidence for naturally occurring epigenetic variation in maize, including examples of pure epigenetic variation that is not conditioned by genetic differences. The epigenetic differences are variable within maize populations and exhibit relatively stable trans-generational inheritance. The detected examples of epigenetic variation, including some without tightly linked genetic variation, may contribute to complex trait variation
    corecore