1,027 research outputs found

    Sex-specific role of myostatin signaling in neonatal muscle growth, denervation atrophy, and neuromuscular contractures.

    Get PDF
    Neonatal brachial plexus injury (NBPI) causes disabling and incurable muscle contractures that result from impaired longitudinal growth of denervated muscles. This deficit in muscle growth is driven by increased proteasome-mediated protein degradation, suggesting a dysregulation of muscle proteostasis. The myostatin (MSTN) pathway, a prominent muscle-specific regulator of proteostasis, is a putative signaling mechanism by which neonatal denervation could impair longitudinal muscle growth, and thus a potential target to prevent NBPI-induced contractures. Through a mouse model of NBPI, our present study revealed that pharmacologic inhibition of MSTN signaling induces hypertrophy, restores longitudinal growth, and prevents contractures in denervated muscles of female but not male mice, despite inducing hypertrophy of normally innervated muscles in both sexes. Additionally, the MSTN-dependent impairment of longitudinal muscle growth after NBPI in female mice is associated with perturbation of 20S proteasome activity, but not through alterations in canonical MSTN signaling pathways. These findings reveal a sex dimorphism in the regulation of neonatal longitudinal muscle growth and contractures, thereby providing insights into contracture pathophysiology, identifying a potential muscle-specific therapeutic target for contracture prevention, and underscoring the importance of sex as a biological variable in the pathophysiology of neuromuscular disorders

    Myonuclear accretion is a determinant of exercise-induced remodeling in skeletal muscle.

    Get PDF
    Skeletal muscle adapts to external stimuli such as increased work. Muscle progenitors (MPs) control muscle repair due to severe damage, but the role of MP fusion and associated myonuclear accretion during exercise are unclear. While we previously demonstrated that MP fusion is required for growth using a supra-physiological model (Goh and Millay, 2017), questions remained about the need for myonuclear accrual during muscle adaptation in a physiological setting. Here, we developed an 8 week high-intensity interval training (HIIT) protocol and assessed the importance of MP fusion. In 8 month-old mice, HIIT led to progressive myonuclear accretion throughout the protocol, and functional muscle hypertrophy. Abrogation of MP fusion at the onset of HIIT resulted in exercise intolerance and fibrosis. In contrast, ablation of MP fusion 4 weeks into HIIT, preserved exercise tolerance but attenuated hypertrophy. We conclude that myonuclear accretion is required for different facets of exercise-induced adaptive responses, impacting both muscle repair and hypertrophic growth

    A dynamic network approach for the study of human phenotypes

    Get PDF
    The use of networks to integrate different genetic, proteomic, and metabolic datasets has been proposed as a viable path toward elucidating the origins of specific diseases. Here we introduce a new phenotypic database summarizing correlations obtained from the disease history of more than 30 million patients in a Phenotypic Disease Network (PDN). We present evidence that the structure of the PDN is relevant to the understanding of illness progression by showing that (1) patients develop diseases close in the network to those they already have; (2) the progression of disease along the links of the network is different for patients of different genders and ethnicities; (3) patients diagnosed with diseases which are more highly connected in the PDN tend to die sooner than those affected by less connected diseases; and (4) diseases that tend to be preceded by others in the PDN tend to be more connected than diseases that precede other illnesses, and are associated with higher degrees of mortality. Our findings show that disease progression can be represented and studied using network methods, offering the potential to enhance our understanding of the origin and evolution of human diseases. The dataset introduced here, released concurrently with this publication, represents the largest relational phenotypic resource publicly available to the research community.Comment: 28 pages (double space), 6 figure

    Activin Receptor Type 2A (ACVR2A) Functions Directly in Osteoblasts as a Negative Regulator of Bone Mass

    Get PDF
    Bone and skeletal muscle mass are highly correlated in mammals, suggesting the existence of common anabolic signaling networks that coordinate the development of these two anatomically adjacent tissues. The activin signaling pathway is an attractive candidate to fulfill such a role. Here, we generated mice with conditional deletion of activin receptor (ACVR) type 2A, ACVR2B, or both, in osteoblasts, to determine the contribution of activin receptor signaling in regulating bone mass. Immunohistochemistry localized ACVR2A and ACVR2B to osteoblasts and osteocytes. Primary osteoblasts expressed activin signaling components, including ACVR2A, ACVR2B, and ACVR1B (ALK4) and demonstrated increased levels of phosphorylated Smad2/3 upon exposure to activin ligands. Osteoblasts lacking ACVR2B did not show significant changes in vitro. However, osteoblasts deficient in ACVR2A exhibited enhanced differentiation indicated by alkaline phosphatase activity, mineral deposition, and transcriptional expression of osterix, osteocalcin, and dentin matrix acidic phosphoprotein 1. To investigate activin signaling in osteoblasts in vivo, we analyzed the skeletal phenotypes of mice lacking these receptors in osteoblasts and osteocytes (osteocalcin-Cre). Similar to the lack of effect in vitro, ACVR2B-deficient mice demonstrated no significant change in any bone parameter. By contrast, mice lacking ACVR2A had significantly increased femoral trabecular bone volume at 6 weeks of age. Moreover, mutant mice lacking both ACVR2A and ACVR2B demonstrated sustained increases in trabecular bone volume, similar to those in ACVR2A single mutants, at 6 and 12 weeks of age. Taken together, these results indicate that activin receptor signaling, predominantly through ACVR2A, directly and negatively regulates bone mass in osteoblasts

    The interplay of microscopic and mesoscopic structure in complex networks

    Get PDF
    Not all nodes in a network are created equal. Differences and similarities exist at both individual node and group levels. Disentangling single node from group properties is crucial for network modeling and structural inference. Based on unbiased generative probabilistic exponential random graph models and employing distributive message passing techniques, we present an efficient algorithm that allows one to separate the contributions of individual nodes and groups of nodes to the network structure. This leads to improved detection accuracy of latent class structure in real world data sets compared to models that focus on group structure alone. Furthermore, the inclusion of hitherto neglected group specific effects in models used to assess the statistical significance of small subgraph (motif) distributions in networks may be sufficient to explain most of the observed statistics. We show the predictive power of such generative models in forecasting putative gene-disease associations in the Online Mendelian Inheritance in Man (OMIM) database. The approach is suitable for both directed and undirected uni-partite as well as for bipartite networks

    Audit of short term outcomes of surgical and medical second trimester termination of pregnancy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As comparisons of modern medical and surgical second trimester termination of pregnancy (TOP) are limited, and the optimum method of termination is still debated, an audit of second trimester TOP was undertaken, with the objective of comparing the outcomes of modern medical and surgical methods.</p> <p>Methods</p> <p>All cases of medical and surgical TOP between the gestations of 13 and 20 weeks from 1st January 2007 to 30th June 2008, among women residing in the local health board district, a tertiary teaching hospital in an urban setting, were identified by a search of ICD-10 procedure codes (surgical terminations) and from a ward database (medical terminations). Retrospective review of case notes was undertaken. A total of 184 cases, 51 medical and 133 surgical TOP, were identified. Frequency data were compared using Chi-squared or Fischer's Exact tests as appropriate and continuous data are presented as mean and standard deviation if normally distributed or median and interquartile range if non-parametric.</p> <p>Results</p> <p>Eighty-one percent of surgical terminations occurred between 13 to 16 weeks gestation, while 74% of medical terminations were performed between 17 to 20 weeks gestation. The earlier surgical TOP occurred in younger women and were more often indicated for maternal mental health. Sixteen percent of medical TOP required surgical delivery of the placenta. Evacuation of retained products was required more often after medical TOP (10%) than after surgical TOP (1%). Other serious complications were rare.</p> <p>Conclusion</p> <p>Both medical and surgical TOP are safe and effective for second trimester termination. Medical TOP tend to be performed at later gestations and are associated with a greater likelihood of manual removal of the placenta and delayed return to theatre for retained products. This case series does not address long term complications.</p

    Emergency department triage nurse initiated pain management

    Get PDF
    Objectives: 1) To determine the time difference to analgesia administration for patients with painful limb conditions using an emergency triage nurse initiated pain management protocol versus analgesia administration by emergency doctors after consultation. 2) To determine the frequency of adverse events following such a protocol implementation. Methods: For emergency department patients with isolated limb injury or inflammation, a triage nurse initiated pain management policy was implemented in 2004. The protocol did not require the triage nurse to consult a physician. The triage nurse would record the chief complaint, past medical history, allergy, medication, vital signs, and pain severity using a combination of 0 to 10 numerical and face pain scales. Unless contraindicated, the triage nurse would offer intramuscular ketorolac to patients with pain score ≥5. Medical charts of patients fulfilling the inclusion criteria were reviewed from 1 to 30 September 2004. Results: Two hundred seventy-three patients were reviewed, of whom 73.3% were men and the overall mean age was 40.1 years (standard deviation SD 19.5). Two hundred and nine patients (76.6%) had pain score recorded at triage, and the median was 6. One hundred and five patients (38.5%) received analgesia, of which 69 were given by triage nurses and 36 by physicians. The mean time interval for analgesia given by triage nurse was 2.5 minutes (SD 8.9) and that for physician was significantly longer (p&lt;0.0001) at 68.2 minutes (SD 59.5). There was no adverse drug reaction observed in patients who received intramuscular ketorolac given by triage nurses. Conclusion: The time interval for pain relief of emergency department patients with painful limb conditions was reduced when the triage nurse initiated pain management

    Mapping gene associations in human mitochondria using clinical disease phenotypes

    Get PDF
    Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes

    On the behaviour of lung tissue under tension and compression

    Get PDF
    Lung injuries are common among those who suffer an impact or trauma. The relative severity of injuries up to physical tearing of tissue have been documented in clinical studies. However, the specific details of energy required to cause visible damage to the lung parenchyma are lacking. Furthermore, the limitations of lung tissue under simple mechanical loading are also not well documented. This study aimed to collect mechanical test data from freshly excised lung, obtained from both Sprague-Dawley rats and New Zealand White rabbits. Compression and tension tests were conducted at three different strain rates: 0.25, 2.5 and 25 min−1. This study aimed to characterise the quasi-static behaviour of the bulk tissue prior to extending to higher rates. A nonlinear viscoelastic analytical model was applied to the data to describe their behaviour. Results exhibited asymmetry in terms of differences between tension and compression. The rabbit tissue also appeared to exhibit stronger viscous behaviour than the rat tissue. As a narrow strain rate band is explored here, no conclusions are being drawn currently regarding the rate sensitivity of rat tissue. However, this study does highlight both the clear differences between the two tissue types and the important role that composition and microstructure can play in mechanical response
    • …
    corecore