16 research outputs found

    Differential impact of LPG-and PG-deficient Leishmania major mutants on the immune response of human dendritic cells

    Get PDF
    <div><p>Background</p><p><i>Leishmania major</i> infection induces robust interleukin-12 (IL12) production in human dendritic cells (hDC), ultimately resulting in Th1-mediated immunity and clinical resolution. The surface of <i>Leishmania</i> parasites is covered in a dense glycocalyx consisting of primarily lipophosphoglycan (LPG) and other phosphoglycan-containing molecules (PGs), making these glycoconjugates the likely pathogen-associated molecular patterns (PAMPS) responsible for IL12 induction.</p><p>Methodology/Principal Findings</p><p>Here we explored the role of parasite glycoconjugates on the hDC IL12 response by generating <i>L</i>. <i>major</i> Friedlin V1 mutants defective in LPG alone, (FV1 <i>lpg1-</i>), or generally deficient for all PGs, (FV1 <i>lpg2-</i>). Infection with metacyclic, infective stage, <i>L</i>. <i>major</i> or purified LPG induced high levels of <i>IL12B</i> subunit gene transcripts in hDCs, which was abrogated with FV1 <i>lpg1-</i> infections. In contrast, hDC infections with FV1 <i>lpg2-</i> displayed increased <i>IL12B</i> expression, suggesting other PG-related/<i>LPG2</i> dependent molecules may act to dampen the immune response. Global transcriptional profiling comparing WT, FV1 <i>lpg1-</i>, FV1 <i>lpg2-</i> infections revealed that FV1 <i>lpg1-</i> mutants entered hDCs in a silent fashion as indicated by repression of gene expression. Transcription factor binding site analysis suggests that LPG recognition by hDCs induces IL-12 in a signaling cascade resulting in Nuclear Factor κ B (NFκB) and Interferon Regulatory Factor (IRF) mediated transcription.</p><p>Conclusions/Significance</p><p>These data suggest that <i>L</i>. <i>major</i> LPG is a major PAMP recognized by hDC to induce IL12-mediated protective immunity and that there is a complex interplay between PG-baring <i>Leishmania</i> surface glycoconjugates that result in modulation of host cellular IL12.</p></div

    Higher levels of glutamate in the associative-striatum of subjects with prodromal symptoms of schizophrenia and patients with first-episode psychosis

    Get PDF
    The glutamatergic and dopaminergic systems are thought to be involved in the pathophysiology of schizophrenia. Their interaction has been widely documented and may have a role in the neurobiological basis of the disease. The aim of this study was to compare, using proton magnetic resonance spectroscopy (1H-MRS), glutamate levels in the precommissural dorsal-caudate (a dopamine-rich region) and the cerebellar cortex (negligible for dopamine) in the following: (1) 18 antipsychotic-naïve subjects with prodromal symptoms and considered to be at ultra high-risk for schizophrenia (UHR), (2) 18 antipsychotic-naïve first- episode psychosis patients (FEP), and (3) 40 age- and sex- matched healthy controls. All subjects underwent a 1H-MRS study using a 3Tesla scanner. Glutamate levels were quantified and corrected for the proportion of cerebrospinal fluid and percentage of gray matter in the voxel. The UHR and FEP groups showed higher levels of glutamate than controls, without differences between UHR and FEP. In the cerebellum, no differences were seen between the three groups. The higher glutamate level in the precommissural dorsal-caudate and not in the cerebellum of UHR and FEP suggests that a high glutamate level (a) precedes the onset of schizophrenia, and (b) is present in a dopamine-rich region previously implicated in the pathophysiology of schizophrenia.peer-reviewe

    Why Functional Pre-Erythrocytic and Bloodstage Malaria Vaccines Fail: A Meta-Analysis of Fully Protective Immunizations and Novel Immunological Model

    Get PDF
    Background: Clinically protective malaria vaccines consistently fail to protect adults and children in endemic settings, and at best only partially protect infants. Methodology/Principal Findings: We identify and evaluate 1916 immunization studies between 1965-February 2010, and exclude partially or nonprotective results to find 177 completely protective immunization experiments. Detailed reexamination reveals an unexpectedly mundane basis for selective vaccine failure: live malaria parasites in the skin inhibit vaccine function. We next show published molecular and cellular data support a testable, novel model where parasite-host interactions in the skin induce malaria-specific regulatory T cells, and subvert early antigen-specific immunity to parasite-specific immunotolerance. This ensures infection and tolerance to reinfection. Exposure to Plasmodium-infected mosquito bites therefore systematically triggers immunosuppression of endemic vaccine-elicited responses. The extensive vaccine trial data solidly substantiate this model experimentally. Conclusions/Significance: We conclude skinstage-initiated immunosuppression, unassociated with bloodstage parasites, systematically blocks vaccine function in the field. Our model exposes novel molecular and procedural strategies to significantly and quickly increase protective efficacy in both pipeline and currently ineffective malaria vaccines, and forces fundamental reassessment of central precepts determining vaccine development. This has major implications fo

    Thyroid associated ophthalmopathy: evidence for CD4(+) γδ T cells; de novo differentiation of RFD7(+) macrophages, but not of RFD1(+) dendritic cells; and loss of γδ and αβ T cell receptor expression

    Get PDF
    Aim: To characterise periorbital immune cells (stages, kinetics) in active and inactive thyroid associated ophthalmopathy (A-TAO; I-TAO). Methods: In orbital tissue cryosections of patients with A-TAO (n = 15), I-TAO (n = 11), and healthy controls (n = 14), adipose and fibrovascular areas were evaluated for MHC II(+) cells, CD45(+) total leukocytes, myeloid cells (CD33(+) monocytes; CD14(+) macrophages; mature RFD7(+) macrophages; RFD1(+) dendritic cells (DCs)), and lymphoid cells (CD4(+) T cells; αβ and γδ T cells; CD20(+) B cells). Results are expressed as medians and 5% confidence intervals. Results: In fibrovascular septae, a surge of CD33(+) immigrants clearly correlating with disease activity generated significantly increased (p<0.05) percentages of CD14(+) and RFD7(+) macrophages. Intriguingly, CD4(+) cells were mostly γδ T cells, while αβ T helper cells were much less frequent. Successful treatment rendering TAO inactive apparently downregulates monocyte influx, macrophage differentiation, and T cell receptor expression. Similar trends were recorded for adipose tissue. Interestingly, RFD1(+) DCs were completely absent from all conditions examined. Conclusion: A-TAO coincides with periorbital monocyte infiltration and de novo differentiation of macrophages, but not DCs. The authors discuss a novel potential role for inflammatory CD4(+) γδ T cells in TAO. Successful treatment apparently downregulates orbital monocyte recruitment and effects functional T cell knockout

    Mammal Cells Double Their Total RNAs against Diabetes, Ischemia Reperfusion and Malaria-Induced Oxidative Stress

    No full text
    Total cellular RNA level is stable usually, although it may increase gradually during growth or decrease gradually under certain stressors. However, we found that mammal cell RNAs could be doubled within 24 h in response to free heme accumulation (ischemia reperfusion and malaria infection) or a high level of glucose treatment (diabetes). Clinical investigations in rats showed that pretreatment with heme (24 h for doubling total RNAs) alleviated oxidative damages caused by diabetes, and pretreatment with glucose (24 h for trebling total RNAs) alleviated oxidative damages caused by ischemia reperfusion or malaria infection. Therefore, this rapid RNA amplification may play an important role in mammal adaptation to diabetes, ischemia reperfusion and malaria infection–derived oxidative stress. This rapid RNA amplification is derived from glucose and heme, but not from their accompanying reactive oxygen species. Hexokinases endure glucose-derived reactive oxygen species accumulation but are not related glucose-derived RNA amplification. In contrast, the TATA box-binding protein (TBP) mediates all glucose- and heme-induced RNA amplification in mammal cells
    corecore