9 research outputs found

    Ancillary human health benefits of improved air quality resulting from climate change mitigation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Greenhouse gas (GHG) mitigation policies can provide ancillary benefits in terms of short-term improvements in air quality and associated health benefits. Several studies have analyzed the ancillary impacts of GHG policies for a variety of locations, pollutants, and policies. In this paper we review the existing evidence on ancillary health benefits relating to air pollution from various GHG strategies and provide a framework for such analysis.</p> <p>Methods</p> <p>We evaluate techniques used in different stages of such research for estimation of: (1) changes in air pollutant concentrations; (2) avoided adverse health endpoints; and (3) economic valuation of health consequences. The limitations and merits of various methods are examined. Finally, we conclude with recommendations for ancillary benefits analysis and related research gaps in the relevant disciplines.</p> <p>Results</p> <p>We found that to date most assessments have focused their analysis more heavily on one aspect of the framework (e.g., economic analysis). While a wide range of methods was applied to various policies and regions, results from multiple studies provide strong evidence that the short-term public health and economic benefits of ancillary benefits related to GHG mitigation strategies are substantial. Further, results of these analyses are likely to be underestimates because there are a number of important unquantified health and economic endpoints.</p> <p>Conclusion</p> <p>Remaining challenges include integrating the understanding of the relative toxicity of particulate matter by components or sources, developing better estimates of public health and environmental impacts on selected sub-populations, and devising new methods for evaluating heretofore unquantified and non-monetized benefits.</p

    A risk of bias instrument for non-randomized studies of exposures: A users' guide to its application in the context of GRADE.

    Full text link
    The objective of this paper is to explain how to apply, interpret, and present the results of a new instrument to assess the risk of bias (RoB) in non-randomized studies (NRS) dealing with effects of environmental exposures on health outcomes. This instrument is modeled on the Risk Of Bias In Non-randomized Studies of Interventions (ROBINS-I) instrument. The RoB instrument for NRS of exposures assesses RoB along a standardized comparison to a randomized target experiment, instead of the study-design directed RoB approach. We provide specific guidance for the integral steps of developing a research question and target experiment, distinguishing issues of indirectness from RoB, making individual-study judgments, and performing and interpreting sensitivity analyses for RoB judgments across a body of evidence. Also, we present an approach for integrating the RoB assessments within the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) framework to assess the certainty of the evidence in the systematic review. Finally, we guide the reader through an overall assessment to support the rating of all domains that determine the certainty of a body of evidence using the GRADE approach

    Microbial Indicators of Fecal Pollution: Recent Progress and Challenges in Assessing Water Quality

    No full text
    corecore