78 research outputs found

    Ultrafast optical rotations of electron spins in quantum dots

    Full text link
    Coherent manipulation of quantum bits (qubits) on time scales much shorter than the coherence time is a key prerequisite for quantum information processing. Electron spins in quantum dots (QDs) are particularly attractive for implementations of qubits. Efficient optical methods for initialization and readout of spins have been developed in recent years. Spin coherence times in the microsecond range have been demonstrated, so that spin control by picosecond optical pulses would be highly desirable. Then a large number of spin rotations could be performed while coherence is maintained. A major remaining challenge is demonstration of such rotations with high fidelity. Here we use an ensemble of QD electron spins focused into a small number of precession modes about a magnetic field by periodic optical pumping. We demonstrate ultrafast optical rotations of spins about arbitrary axes on a picosecond time scale using laser pulses as control fields.Comment: 10 pages, 4 figure

    Ultrafast control of donor-bound electron spins with single detuned optical pulses

    Full text link
    The ability to control spins in semiconductors is important in a variety of fields including spintronics and quantum information processing. Due to the potentially fast dephasing times of spins in the solid state [1-3], spin control operating on the picosecond or faster timescale may be necessary. Such speeds, which are not possible to attain with standard electron spin resonance (ESR) techniques based on microwave sources, can be attained with broadband optical pulses. One promising ultrafast technique utilizes single broadband pulses detuned from resonance in a three-level Lambda system [4]. This attractive technique is robust against optical pulse imperfections and does not require a fixed optical reference phase. Here we demonstrate the principle of coherent manipulation of spins theoretically and experimentally. Using this technique, donor-bound electron spin rotations with single-pulse areas exceeding pi/4 and two-pulses areas exceeding pi/2 are demonstrated. We believe the maximum pulse areas attained do not reflect a fundamental limit of the technique and larger pulse areas could be achieved in other material systems. This technique has applications from basic solid-state ESR spectroscopy to arbitrary single-qubit rotations [4, 5] and bang-bang control[6] for quantum computation.Comment: 15 pages, 4 figures, submitted 12/2008. Since the submission of this work we have become aware of related work: J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom, Science 320: 349-352 (2008

    CO2PipeHaz: Quantitative hazard assessment for next generation CO2 pipelines

    Get PDF
    Without a clear understanding of the hazards associated with the failure of CO2 pipelines, carbon capture and storage (CCS) cannot be considered as a viable proposition for tackling the effects of global warming. Given that CO2 is an asphyxiant at high concentrations, the development of reliable validated pipeline outflow and dispersion models are central to addressing this challenge. This information is pivotal to quantifying all the hazard consequences associated with the failure of CO2 transportation pipelines, which forms the basis for emergency response planning and determining minimum safe distances to populated areas. This paper presents an overview of the main findings of the recently completed CO2PipeHaz project [1] which focussed on the hazard assessment of CO2 pipelines to be employed as an integral part of CCS. Funded by the European Commission FP7 Energy programme, the project's main objective was to address this fundamentally important issue

    Towards Quantum Repeaters with Solid-State Qubits: Spin-Photon Entanglement Generation using Self-Assembled Quantum Dots

    Full text link
    In this chapter we review the use of spins in optically-active InAs quantum dots as the key physical building block for constructing a quantum repeater, with a particular focus on recent results demonstrating entanglement between a quantum memory (electron spin qubit) and a flying qubit (polarization- or frequency-encoded photonic qubit). This is a first step towards demonstrating entanglement between distant quantum memories (realized with quantum dots), which in turn is a milestone in the roadmap for building a functional quantum repeater. We also place this experimental work in context by providing an overview of quantum repeaters, their potential uses, and the challenges in implementing them.Comment: 51 pages. Expanded version of a chapter to appear in "Engineering the Atom-Photon Interaction" (Springer-Verlag, 2015; eds. A. Predojevic and M. W. Mitchell

    Radiation-Induced c-Jun Activation Depends on MEK1-ERK1/2 Signaling Pathway in Microglial Cells

    Get PDF
    Radiation-induced normal brain injury is associated with acute and/or chronic inflammatory responses, and has been a major concern in radiotherapy. Recent studies suggest that microglial activation is a potential contributor to chronic inflammatory responses following irradiation; however, the molecular mechanism underlying the response of microglia to radiation is poorly understood. c-Jun, a component of AP-1 transcription factors, potentially regulates neural cell death and neuroinflammation. We observed a rapid increase in phosphorylation of N-terminal c-Jun (on serine 63 and 73) and MAPK kinases ERK1/2, but not JNKs, in irradiated murine microglial BV2 cells. Radiation-induced c-Jun phosphorylation is dependent on the canonical MEK-ERK signaling pathway and required for both ERK1 and ERK2 function. ERK1/2 directly interact with c-Jun in vitro and in cells; meanwhile, the JNK binding domain on c-Jun is not required for its interaction with ERK kinases. Radiation-induced reactive oxygen species (ROS) potentially contribute to c-Jun phosphorylation through activating the ERK pathway. Radiation stimulates c-Jun transcriptional activity and upregulates c-Jun-regulated proinflammatory genes, such as tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2. Pharmacologic blockade of the ERK signaling pathway interferes with c-Jun activity and inhibits radiation-stimulated expression of c-Jun target genes. Overall, our study reveals that the MEK-ERK1/2 signaling pathway, but not the JNK pathway, contributes to the c-Jun-dependent microglial inflammatory response following irradiation

    Roles for retrotransposon insertions in human disease

    Get PDF
    • …
    corecore