56 research outputs found

    Quark mass anomalous dimension at O(1/N_f^2) in QCD

    Get PDF
    We compute the d-dimensional critical exponents corresponding to the wave function and mass renormalization of the quark in QCD in the Landau gauge at a new order, O(1/N_f^2), in the large N_f expansion. The computations are simplified by the establishment in d-dimensions of the critical point equivalence of QCD and the non-abelian Thirring model beyond leading order. The form of the O(1/N_f^2) coefficients in the MSbar quark mass anomalous dimension at five loops is deduced and compared with the numerical asymptotic Pade approximant prediction.Comment: 13 latex pages, 3 eps figure

    Conformal algebra: R-matrix and star-triangle relation

    Full text link
    The main purpose of this paper is the construction of the R-operator which acts in the tensor product of two infinite-dimensional representations of the conformal algebra and solves Yang-Baxter equation. We build the R-operator as a product of more elementary operators S_1, S_2 and S_3. Operators S_1 and S_3 are identified with intertwining operators of two irreducible representations of the conformal algebra and the operator S_2 is obtained from the intertwining operators S_1 and S_3 by a certain duality transformation. There are star-triangle relations for the basic building blocks S_1, S_2 and S_3 which produce all other relations for the general R-operators. In the case of the conformal algebra of n-dimensional Euclidean space we construct the R-operator for the scalar (spin part is equal to zero) representations and prove that the star-triangle relation is a well known star-triangle relation for propagators of scalar fields. In the special case of the conformal algebra of the 4-dimensional Euclidean space, the R-operator is obtained for more general class of infinite-dimensional (differential) representations with nontrivial spin parts. As a result, for the case of the 4-dimensional Euclidean space, we generalize the scalar star-triangle relation to the most general star-triangle relation for the propagators of particles with arbitrary spins.Comment: Added references and corrected typo

    Large spin systematics in CFT

    Get PDF
    20 pages; v2: version published in JHEPUsing conformal field theory (CFT) arguments we derive an infinite number of constraints on the large spin expansion of the anomalous dimensions and structure constants of higher spin operators. These arguments rely only on analiticity, unitarity, crossing-symmetry and the structure of the conformal partial wave expansion. We obtain results for both, perturbative CFT to all order in the perturbation parameter, as well as non-perturbatively. For the case of conformal gauge theories this provides a proof of the reciprocity principle to all orders in perturbation theory and provides a new "reciprocity" principle for structure constants. We argue that these results extend also to non-conformal theories.Peer reviewe

    Operator product expansion in QCD in off-forward kinematics: Separation of kinematic and dynamical contributions

    Full text link
    We develop a general approach to the calculation of target mass and finite t=(p'-p)^2 corrections in hard processes which can be studied in the framework of the operator product expansion and involve momentum transfer from the initial to the final hadron state. Such corrections, which are usually referred to as kinematic, can be defined as contributions of operators of all twists that can be reduced to total derivatives of the leading twist operators. As the principal result, we provide a set of projection operators that pick up the "kinematic" part of an arbitrary flavor-nonsinglet twist-four operator in QCD. A complete expression is derived for the time-ordered product of two electromagnetic currents that includes all kinematic corrections to twist-four accuracy. The results are immediately applicable to the studies of deeply-virtual Compton scattering, transition gamma^*-> M gamma form factors and related processes. As a byproduct of this study, we find a series of "genuine" twist-four flavor-nonsinglet quark-antiquark-gluon operators which have the same anomalous dimensions as the leading twist quark-antiquark operators.Comment: 68 pages, 2 figures. Misprints in Eq.(5.64) and several equations in Sec.6 are corrected. For readers' convenience all corrections are marked in re

    Renormalisation of heavy-light light ray operators

    Full text link
    We calculate the renormalisation of different light ray operators with one light degree of freedom and a static heavy quark. Both 2→22\to2- and 2→32\to3-kernels are considered. A comparison with the light-light case suggests that the mixing with three-particle operators is solely governed by the light degrees of freedom. Additionally we show that conformal symmetry is already broken at the level of the one loop counterterms due to the additional UV-renormalisation of a cusp in the two contributing Wilson-lines. This general feature can be used to fix the 2→22\to2-renormalisation kernels up to a constant. Some examples for applications of our results are given.Comment: 23 pages, 5 figures; v2: changed some wording, added a few references and one appendix concerning some subtleties related to gauge fixing and ghost terms; v3: clarified calculation in section 3.2., added an explicit calculation in section 5.2, corrected a few typos and one figure, added a few comments, results unchanged, except for typesetting matches version to appear in JHE

    Twist operators in N=4 beta-deformed theory

    Get PDF
    In this paper we derive both the leading order finite size corrections for twist-2 and twist-3 operators and the next-to-leading order finite-size correction for twist-2 operators in beta-deformed SYM theory. The obtained results respect the principle of maximum transcendentality as well as reciprocity. We also find that both wrapping corrections go to zero in the large spin limit. Moreover, for twist-2 operators we studied the pole structure and compared it against leading BFKL predictions.Comment: 17 pages; v2: minor changes, references adde

    Quantization of Integrable Systems and a 2d/4d Duality

    Full text link
    We present a new duality between the F-terms of supersymmetric field theories defined in two- and four-dimensions respectively. The duality relates N=2 supersymmetric gauge theories in four dimensions, deformed by an Omega-background in one plane, to N=(2,2) gauged linear sigma-models in two dimensions. On the four dimensional side, our main example is N=2 SQCD with gauge group SU(L) and 2L fundamental flavours. Using ideas of Nekrasov and Shatashvili, we argue that the Coulomb branch of this theory provides a quantization of the classical Heisenberg SL(2) spin chain. Agreement with the standard quantization via the Algebraic Bethe Ansatz implies the existence of an isomorphism between the chiral ring of the 4d theory and that of a certain two-dimensional theory. The latter can be understood as the worldvolume theory on a surface operator/vortex string probing the Higgs branch of the same 4d theory. We check the proposed duality by explicit calculation at low orders in the instanton expansion. One striking consequence is that the Seiberg-Witten solution of the 4d theory is captured by a one-loop computation in two dimensions. The duality also has interesting connections with the AGT conjecture, matrix models and topological string theory where it corresponds to a refined version of the geometric transition.Comment: 51 pages, 7 figures. Additional comments, minor improvements and references adde

    Quantum Spectral Curve at Work: From Small Spin to Strong Coupling in N=4 SYM

    Full text link
    We apply the recently proposed quantum spectral curve technique to the study of twist operators in planar N=4 SYM theory. We focus on the small spin expansion of anomalous dimensions in the sl(2) sector and compute its first two orders exactly for any value of the 't Hooft coupling. At leading order in the spin S we reproduced Basso's slope function. The next term of order S^2 structurally resembles the Beisert-Eden-Staudacher dressing phase and takes into account wrapping contributions. This expansion contains rich information about the spectrum of local operators at strong coupling. In particular, we found a new coefficient in the strong coupling expansion of the Konishi operator dimension and confirmed several previously known terms. We also obtained several new orders of the strong coupling expansion of the BFKL pomeron intercept. As a by-product we formulated a prescription for the correct analytical continuation in S which opens a way for deriving the BFKL regime of twist two anomalous dimensions from AdS/CFT integrability.Comment: 53 pages, references added; v3: due to a typo in the coefficients C_2 and D_2 on page 29 we corrected the rational part of the strong coupling predictions in equations (1.5-6), (6.22-24), (6.27-30) and in Table
    • …
    corecore