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1. Introduction

The study of exact scaling dimensions of N = 4 SYM gauge-invariant composite operators

with finite quantum numbers, through the gauge-string correspondence [1], has recently

undergone significant developments coming from the use of integrability techniques. The

finiteness of the system forces one to supplement the asymptotic result described by the

Asymptotic Bethe Ansatz [2] with finite-size corrections described by the so-called Lüscher

formulae [3]. In the context of the AdS/CFT correspondence, this formalism was first

found in [4] and then generalized in [5], where it was employed to find the spectrum of

the Konishi operator at four loops. This result was in perfect agreement with direct field

theory calculations [6, 7]. The Lüscher formula approach was then extensively used to find

anomalous dimensions of the so called twist-J operators. The spectrum of the twist-2
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operators was found up to five-loop order [8–10] and for twist-3 operators even to six loops

[11, 12].

The study of the spectrum in the finite volume culminated in the formulation of the Y-

system and the Thermodynamic Bethe Ansatz (TBA) equations [13–17]. Whereas Lüscher’s

approach is manifestly perturbative in nature, these equations are believed to describe the

full planar spectrum of N = 4 super Yang-Mills theory. Both to leading and subleading

order in perturbation theory agreement was found with Lüscher’s approach, establishing

the compatibility of these formalisms [18–20].

Recently, the techniques used to study finite-size correction in N = 4 SYM have been

generalized to theories with less supersymmetry, namely, the so-called β-deformed theories.

This was done by introducing twisted transfer matrices [21, 22] and by considering defor-

mations of the S-matrix [23, 24]. These methods proved to be succesful as they correctly

reproduced wrapping energy corrections that were computed in β-deformed SYM [25, 26].

The method based on twisting transfer matrices also potentially allows for studying

the more general γ-deformations and orbifold models based on the AdS5 × S5 superstring

[22]. These developments open up new avenues along which finite size corrections can be

studied. Mainly because, in these deformed theories, wrapping corrections appear generi-

cally at lower loop orders than in N = 4 SYM. In the case of β-deformed theories wrapping

corrections were found to start to contribute one loop order lower and in orbifold models

potentially even two orders lower [22].

In this paper we study finite-size effects in β-deformed theories using Lüscher’s ap-

proach. We focus on twist operators in the sl(2) sector, for which unfortunately little

explicit field theory data is known. We consider twist-2 and twist-3 operators. For both

families of operators we study the leading order (LO) wrapping correction and we find

explicit formulae describing these in terms of harmonic sums. For twist-2 operators we

then study the next-to-leading order (NLO) wrapping correction. Our formula agrees with

the results recently obtained in [27], where the authors found the first few values of the

wrapping corrections for small spins M . For general M the leading finite-size correction

takes the form

ELO(M)

g6 sin2(2πβ)
=S1(M)

S2(M − 1)− S−2(M − 1)− S−2(M + 1)− S2(M + 1)

M(M + 1)
. (1.1)

It would be very interesting to have this results confirmed by a direct field theoretic com-

putations. The large spin behavior of (1.1) can be easily read off and it is proportional

to logM/M2 which does not affect the cusp anomalous dimension as suspected. In the

following we will also confirm that this result respects reciprocity and compare it with the

leading order BFKL equation [28–30]. Unfortunately, we were not able to find a closed

formula for the NLO wrapping correction to twist-2 operators.

For twist-3 operators we also found a closed formula for the leading wrapping correction

Etwist-3
LO

g8 sin2(3πβ)
=
S1(M/2)

M + 1

[

5

2
ζ(5)− S2(M/2)ζ(3) +

1

4
S5(M/2) −

1

2
S2,3(M/2)

]

. (1.2)
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Again, one sees that in this case the cusp anomalous dimension is not affected by the

wrapping corrections and the result is reciprocity respecting. We will show that both

leading order corrections (1.1) and (1.2) are of maximal transcendentality.

This paper is organized as follows. First we will give a brief discussion on twist-J op-

erators and set notation and give definitions. After this we will discuss the twisted transfer

matrices that are needed to describe finite-size effects in β-deformed theories and we will

explicitly give the corresponding Y-functions. In section 4 we will then proceed with the

computation of the leading order wrapping corrections and study their properties. Sub-

sequently, we continue with a discussion of the next-to-leading order wrapping correction.

We end with some conclusions.

2. Definitions

In this section we will introduce the basic notions that will be used in the remainder of

this paper. In particular we will define twist-J operators and describe properties of their

anomalous dimensions at weak coupling. In the following we will be interested only in the

twist-2 and twist-3 operators and we will restrict to these cases whenever necessary.

2.1 Twist-J operators

We will investigate twist-J operators which are embedded in the sl(2) closed subsector of

the β-deformed N = 4 SYM theory. Their highest weight representatives are composed of

J scalar fields Z and an even number M of covariant derivatives D

OM,J = DMZJ + . . . , (2.1)

where dots refer to different distributions of covariant derivatives over the scalar fields. For

given J and M we will be interested only in the state with the lowest anomalous dimension.

The scaling dimension for twist-J operators can be written as the loop expansion

∆ = J +M +

∞
∑

ℓ=1

γ2ℓ g
2ℓ (2.2)

where g2 = λ
4π2 . For low loop levels, the anomalous dimension can be found from the Bethe

equations. For the sl(2) sector of the β-deformed theory, these are exactly the same as in

the non-deformed theory and take the form

(

x+k
x−k

)J

=

M
∏

j=1
j 6=k

x−k − x+j

x+k − x−j

1− 1/x+k x
−
j

1− 1/x−k x
+
j

exp(2iθ(uk, uj)) ,

M
∏

k=1

x+k
x−k

= 1 , (2.3)

where the parameters x±(u) are given by the Zhukovsky map and θ(u1, u2) is the dressing

phase. Let us focus here on the twist-2 operators - an analogous discussion is valid for

twist-3 operators. Solving the Bethe equations for J = 2 we get the following asymptotic
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expression for the anomalous dimensions

γtwist-2
asymp =2S1 g

2 −

[

S1 S2 +
1

2
S3

]

g4 +

[

1

2
S1 S

2
2 +

3

4
S3 S2+

+
1

4
S1 S4 +

5

8
S5 −

1

2
S2,3 + S1 S3,1 +

1

2
S4,1 − S3,1,1

]

g6 + . . . . (2.4)

Additionally, starting at three loops, the anomalous dimension will receive wrapping cor-

rections. These can be conveniently described by the perturbative procedures applied in

[21, 22]. This behaviour differs from the non-deformed case where the wrapping correction

to the twist-2 operators anomalous dimension starts at four-loop order. The reason is that

in the non-deformed case, supersymmetry delays the finite-size effects to higher loop order

(e.g. operator O2,2 belongs to the same supermultiplet as Konishi which has length L = 4).

The β-deformation reduces the supersymmetry from N = 4 to N = 1 and one can no

longer find states with length L = 4 but rather one finds states with lower length in the

twist-2 operators multiplets. Because leading wrapping corrections are of order g2L, this

means that they will start a lower loop order in the β-deformed theory compared to N = 4

SYM.

2.2 Harmonic sums

Similarly to the N = 4 SYM theory, the anomalous dimensions are expressed in terms of

transcendental functions: Riemann ζ-functions and nested harmonic sums Sa1,...,am . Since

the former are well-known functions we only define the latter. For one index we have the

standard definition of the harmonic sums

Sa(M) ≡
M
∑

j=1

(sign a)j

j|a|
. (2.5)

while harmonic sums with multiple indices are defined recursively via

Sb,a1,...am(M) ≡
M
∑

j=1

Sa1,...am(j)
(sign b)j

j|b|
. (2.6)

The degree of transcendentality is given by the argument of ζ-function or for the nested

harmonic sum Sa1,...,am by

|a1|+ . . .+ |am|. (2.7)

According to the maximal transcendentality principle anomalous dimension at ℓ-loop order

can be written in terms of the functions with transcendentality degree 2ℓ− 1.

2.3 Reciprocity

The anomalous dimension γ(M) is conjectured to obey a powerful constraint known as

the generalized Gribov-Lipatov reciprocity. This constraint, arising in the QCD context,

has been presented in [31, 32] and approached in [33] from the point of view of the large

M expansion. In particular, in [33] such an analysis has been generalised to anomalous
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dimensions of operators of arbitrary twist-J . Reciprocity has been checked in various multi-

loop calculations of weakly coupled [11, 34–38] and strongly coupled [39, 40] N = 4 gauge

theory.

The reciprocity constraint can be easily expressed in terms of the P -function depending

on the spin M . This function is in one-to-one correspondence, at least perturbatively, with

the anomalous dimension γ(M) as follows from [31–33]

γ(M) = P
(

M + 1
2γ(M)

)

. (2.8)

The reciprocity condition is a constraint that arises in the large M expansion of P (M),

which is expected to take the following form

P (M) =
∑

n≥0

an(log K
2)

K2n
, K2 =M (M + 1) , (2.9)

where the an are coupling-dependent polynomials. Eq. (2.9) implies an infinite set of

constraints on the coefficients of the large M expansion of P (M) organized in a standard

1/M power series. We see in (2.9) the absence of terms of the form 1/K2n+1, odd under

K → −K.

2.4 Large M asymptotics and BFKL

Usually there are two additional checks one can make to test the correctness of the ob-

tained result. Firstly, the large M limit of the anomalous dimension is related to the cusp

anomalous dimension

lim
M→∞

γ(J,M) = 2γcusp(g) logM + . . . , (2.10)

where γcusp(g) can be investigated both from the perturbative side [41] and from the strong

coupling side [42] with an interpolating answer coming from the BES equation [43]. It is

known that cusp anomalous dimension is completely reproduced by the Asymptotic Bethe

Ansatz result which leaves us with the conclusion that the wrapping contribution should

be subleading in the large M limit.

Additionally, for twist-2 operators the continuation of the anomalous dimension to the

non-physical values of the spin M = −1 should be in agreement with the BFKL equation.

Unfortunately, the BFKL equation for β-deformed theory is not known. However, the

leading contribution is expected to be exactly the same as for the non-deformed theory. It

comes from the fact that β-deformation affects only the superpotential in the action, which

is not relevant for the leading BFKL ressumation. The analytic continuation of our result

should therefore agree with the following expansion coming from BFKL

γ = (2 +O(ω))

(

− g2

ω

)

− (0 +O(ω))

(

− g2

ω

)2

+ (0 +O(ω))

(

− g2

ω

)3

+ . . . (2.11)

3. Twisted Y-functions

At this point we will turn to the explicit computation of Lüscher formulae for β-deformed

theory. In this section we will discuss the Y-functions that describe the wrapping correc-

tions for the twist-2,3 operators that we are considering. We will be able to write general
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expressions for these Y-functions in terms of Baxter polynomials. Before moving on to the

details of the twist-2,3 cases separately, let us first focus on some general features of the

relevant Y-functions.

3.1 Twisted transfer matrix

The key feature that allows one to describe β-deformed theory is the notion of a twisted

transfer matrix, for more details see [21, 22]. Consider M string theory particles charac-

terized by the rapidities u1, . . . , uM . Consider also an auxiliary particle with rapidity v

corresponding to a bound state representation πQ of su(2|2) with bound state number Q.

Scattering this auxiliary particle through M particles gives rise to a monodromy matrix

T(v|~u) =
M
∏

i=1

Sai(v, ui) .

Here Sai(v, ui) is the S-matrix which describes scattering of the auxiliary particle with a

particle with rapidity ui. As a matrix acting on the auxiliary space, T(v|~u) satisfies the

fundamental commutation relations

S12(v1, v2)T1(v1|~u)T2(v2|~u) = T2(v2|~u)T1(v1|~u)S12(v1, v2) .

We can introduce a twisted transfer matrix

T (v|~u) = Tr
[

πQ(g)T(v|~u)
]

,

where the element g is called the twist and the trace is taken over the auxiliary space. If g

is such that [S12, g⊗g] = 0, then the fundamental commutation relations imply that T (v|~u)

commute for different values of v and therefore define a set of commuting charges. For the

case at hand we are interested in g ∈ SU(2)× SU(2).

It was found that in order to describe β-deformed theory, the left and right sector have

to be twisted differently. More specifically, for sl(2), the left sector remains untwisted while

the right sector is twisted with a twist of the form g = 1⊗K, with

K =

(

e2πiJβ 0

0 e−2πiJβ

)

. (3.1)

Note that this twist depends on J and consequently is different for twist-2,3.

Asymptotically, the Y-functions1 are given by the generalized Lüscher’s formula [5]

Y o
Q(v) = e−J ẼQ(v)T l(v|~u)T r(v|~u)

∏

i

SQ1∗
sl(2)(v, ui). (3.2)

Here ẼQ(v) is the energy of a mirror Q-particle, SQ1∗
sl(2)(v, ui) denotes the S-matrix with

arguments in the mirror (v) and string regions (ui) and finally T l,r are the left and right

twisted transfer matrices.

1Since we are mainly interested in the asymptotic solution we will omit the superscript o that indicates

the asymptotic solution in the rest of the paper.
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For the states from the sl(2) sector one has that both T l and T r are described by TQ,1,

which is given by

TQ,1(v | ~u) = 1 +
M
∏

i=1

(x− − x−i )(1 − x−x+i )

(x+ − x−i )(1 − x+x+i )

x+

x−
(3.3)

−2 cosα

Q−1
∑

k=0

M
∏

i=1

x+ − x+i
x+ − x−i

√

x−i
x+i

[

1−
2ik
g

v − ui +
i
g
(Q− 1)

]

+
∑

m=±

Q−1
∑

k=1

M
∏

i=1

λm(v, ui, k) .

Definitions of various quantities entering the last formula can be found in appendix A; cosα

is a twist of the bosonic eigenvalues. From the discussion above we have that αl = 0 and

αr = 2πJβ, where β is the deformation parameter of the theory.

As we are interested in the leading order wrapping correction, we will only evaluate

our Y-function to the lowest order in g in this section. Accordingly, we will denote this

lowest order simply by YQ, leaving the g-expansion implicit. It is important to stress that

the wrapping correction for twist-2,3 operators starts at 3 and 4 loops respectively. This is

one order lower as is the case in N = 4 SYM.

3.2 Twist-2

The one-loop Bethe roots ui in the sl(2) sector for twist-2 operators can be encoded by the

Baxter polynomial [44, 45]

PM (u) = 3F2

(

−M,M + 1,
1− iu

2
; 1, 1; 1

)

. (3.4)

The zeroes of this polynomial give, to lowest order in g, the solutions to the Bethe equations

in the sl(2) sector.

Similarly to [8], we find that the Y-function (to lowest order in g) YQ(M) for β-deformed

theory can be written purely in terms of the Baxter polynomial PM

YQ(M) = g6 sin2(2πβ)
TQ(M)T̃Q(M)

RQ(M)

S1(M)

(v2 +Q2)2
, (3.5)

where we defined

TQ(M) =

Q−1
∑

k=0

[

1

2k −Q− iv
−

1

2(k + 1)−Q− iv

]

PM

(

v + i
2k −Q+ 1

2

)

(3.6)

T̃Q(M) = 4

Q−1
∑

k=0

PM

(

v − i
2k −Q+ 1

2

)

. (3.7)

The denominator is given by

RQ(M) = PM

(

v −
i(Q+ 1)

2

)

PM

(

v −
i(Q− 1)

2

)

PM

(

v +
i(Q− 1)

2

)

PM

(

v +
i(Q+ 1)

2

)

.

(3.8)

The fact that the Y-functions factor into two different parts TQ, T̃Q is a direct consequence

of the different twistings of the left and right sectors.
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Let us remark that the wrapping correction is proportional to S1(M). We would also

like to point out that the complete β dependence at this level is simply given by a factor

of sin2(2πβ) in front of the wrapping correction. This automatically ensures that when

sending β → 0, the wrapping correction vanishes and our result agrees with the calculations

in N = 4 SYM. Finally, the β-dependent correction also vanishes upon sending β → 1
2 .

3.3 Twist-3

Analogously, the one-loop Bethe roots in the sl(2) sector for twist-3 operators are encoded

by the Baxter polynomial [46]

P̃M (u) = 4F3

(

M

2
+ 1,−

M

2
,
1− iu

2
,
1 + iu

2
; 1, 1, 1; 1

)

(3.9)

Again, the zeroes of this polynomial give, to lowest order in g, the solutions to the Bethe

equations.

The Y-function for twist-3 can be written exactly in the same way as for twist-2 oper-

ators in terms of the Baxter polynomial PM , namely

YQ(M) = g8 sin2(3πβ)
TQ(M)T̃Q(M)

RQ(M)

S1(
M
2 )

(v2 +Q2)3
, (3.10)

where TQ, T̃Q and RQ are defined as in (3.6),(3.7) and (3.8) respectively, but with PM

replaced by the twist-3 polynomial P̃M .

This time the wrapping correction is proportional to S1(
M
2 ). Again the β dependence

at this level is simply given by a β-dependent prefactor that vanishes for β → 0 and for

β → 1
3 ,

2
3

2.

4. Wrapping correction

In this section we present the wrapping corrections to the twist-2,3 operators. We find

that both wrapping corrections can be written in terms of harmonic sums. However, in

contradistinction to N = 4 SYM, the arguments of the different sums are shifted.

The energy of an M -particle state from the sl(2)-sector is given by [14–17]

E = J +
M
∑

i=1

E(pi)−
1

2π

∞
∑

Q=1

∫

dv
dp̃Q

dv
log(1 + YQ(v)). (4.1)

Here the integration runs over a real rapidity line of the mirror theory and p̃Q are momenta

of the mirror Q-particles. Moreover, E(p) is the asymptotic energy of a string theory particle

with momentum p, given by

E(p) =

√

1 + 4g2 sin2
p

2
. (4.2)

2Our results exhibit the property that for special values of β =
n
J

the leading wrapping correction

vanishes as was the case in [22]. The result is also manifestly invariant under the shift β → β +
n
J
, cf. [47].
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The last term in the formula (4.1) can be understood as the finite-size correction to the

asymptotic, i.e. large J , dispersion relation.

When expanding energy and momentum for small g around the asymptotic solutions

Y o
Q, we obtain the leading order corrections to the energy

ELO = −
1

2π

∞
∑

Q=1

∫

dv YQ(v) . (4.3)

By using this formula and our explicit expressions for the Y-functions derived in the previous

section, it is now straightforward to compute the leading order finite-size correction to the

energy.

4.1 Twist-2

We use formula (3.5) for the Y-function to calculate (4.3) for operators with an even number

of particles. We have computed the wrapping correction for M = 2, 4, . . . , 90 3.

It is quickly seen that the resulting ELO(M) cannot be written purely in terms of

harmonic sums Sa1,a2,...(M). However, we found that it is possible to write the wrapping

correction as a combination of harmonic sums with shifted arguments:

Etwist-2
LO (M)

g6 sin2(2πβ)
=

2S1(M)

M(M + 1)
[(A+B + 2)S−2(M)− (A−B)S2(M)−AS−2(M − 1)+

+AS2(M − 1)−BS−2(M + 1)−BS2(M + 1)] (4.4)

where A,B are arbitrary constants. The combination of terms proportional to A,B vanishes

for even values of M . In other words, for even M the above result coincides with

Etwist-2
LO (M) = 4g6 sin2(2πβ)

S1(M)S−2(M)

M(M + 1)
(4.5)

It is directly seen that formula (4.5) is reciprocity respecting. It is also useful to notice that

the denominator M(M + 1) can be written as

1

M(M + 1)
= (S1(M + 1)− S1(M))(S1(M)− S1(M − 1)). (4.6)

This indicates that the degree of transcidentality is 5, and as such, the wrapping correction

in β-deformed theory obeys the principle of maximum transcendentality. It is also easy to

check that, in the limit of large spin M , formula (4.5) behaves like

Etwist-2
LO ∼

logM

M2
+ . . . . (4.7)

The coefficients A,B can subsequently be fixed by considering the BFKL equation

and reciprocity. Analytically continuing Etwist-2
LO (M) to M = −1 reveals the following pole

structure

2(B + 1)

ω4
+

2(B + 1)

ω3
+

2(B +A+ 1)− 1
6π

2(5B + 8)

ω2
+O

(

1

ω

)

, (4.8)

3Our findings agree with the results listed in formula (3.20) of [27].
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where ω =M+1. According to the BFKL prediction for the undeformed theory (2.11), the

pole structure at this level should start at ω−2. This can uniquely be achieved by setting

B = −1. (4.9)

Moreover, one then finds that the reciprocity condition (2.9) is satisfied only for A = B

and hence we arrive at the following final result for twist-2 operators

Etwist-2
LO (M)

g6 sin2 πβ
=S1(M)

S2(M − 1)− S−2(M − 1)− S−2(M + 1)− S2(M + 1)

M(M + 1)
. (4.10)

Of course, the above form is fixed by requiring reciprocity and compatibility with BFKL,

which are most likely valid for β-deformed SYM, but it would be interesting to find field

theoretic evidence for this.

4.2 Twist-3

We explicitly computed the leading contribution to twist-3 operators for M = 2, 4, . . . , 64.

In this case, we found the following form of the wrapping correction

Etwist-3
LO

g8 sin2(3πβ)
=
S1(M/2)

M + 1

[

5

2
ζ(5)− S2(M/2)ζ(3) +

1

4
S5(M/2) −

1

2
S2,3(M/2)

]

. (4.11)

It is worthwhile to notice that all the indices of the harmonic sums are positive and depend

on M/2, similar to N = 4 SYM [11, 12, 37]. The maximum transcendentality principle and

reciprocity are once again respected.

5. NLO wrapping corrections

To describe the next-to-leading order wrapping correction all quantities in (4.1) must be

carefully expanded to one order higher in g2. In what follows we will first discuss the

expansion of the different terms separately and then give the resulting NLO wrapping

correction to the energy.

5.1 Different contributions

First we consider the term in (4.1) that is not related to the Y-function

dp̃Q

dv
= 1 + 2g2

v2 −Q2

(v2 +Q2)2
+O(g4). (5.1)

Next we focus on the term log(1 + YQ(v|û)). This term depends both implicitly (through

the Bethe root û = u+ g2δu) and explicitly on g. Expanding this gives

log(1 + YQ(v|û)) = Y LO
Q (v|u) + Y LO,2

Q (v|u) + Y NLO
Q (v|u) +O(g10), (5.2)

where Y LO
Q (v|u) is of order g6 and Y LO,2

Q (v|u), Y NLO
Q (v|u) are of order g8. Here Y LO,2

Q (v|u)

is obtained by expanding the Bethe root û = u+ g2δu and is expressed as

Y LO,2
Q (v|u) ≡ g2

∑

i

∂ui
Y LO
Q (v|u) δui. (5.3)
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Subsequently, we turn our attention to Y NLO
Q (v|u). This function is easily computed by

expanding (3.3). The untwisted transfer matrix coincides with the one used for N = 4 SYM,

so let us focus on the twisted transfer matrix. This transfer matrix admits the following

expansion

TNLO
Q (α) =

2g2S1(M)

Q− iv
TLO
Q (α) + TLO

Q (α = 0). (5.4)

The second term in the above expansion automatically ensures that upon sending β → 0,

our result reproduces the correct N = 4 SYM result. In Y NLO
Q (v|u) the expansion of the

scalar factor S0 of the S-matrix also has to be taken into account. Its explicit small g

expansion is given in Appendix A.

Finally, we consider the term involving the dispersion relation E(p) from eq.(4.1). Since

the momentum also receives a wrapping correction, i.e.

p→ p+ g6δp, (5.5)

the asymptotic energy E(p) also gets corrected

E(p) =

√

1 + 4g2 sin2
p+ δp

2
=

√

1 + 4g2 sin2
p

2
+ g8 sin p δp+O(g10). (5.6)

The correction δp can be computed from the Bethe equations [9]. Define the following

function

BAEk = −

(

uk + i

uk − i

)2 M
∏

j=1

uk − uj + 2i

uk − uj − 2i
. (5.7)

The correction to the momentum δp is then described by the following set of equations

∑

i

∂BAEk

∂pi
δpi = Φk, k = 1, . . .M, (5.8)

where momentum and rapidity are related via u = cot p
2 and Φk is given by

Φk =
∞
∑

Q=1

∫

dv
dp̃Q

dv

g6

(v2 +Q2)2
stra [Sa1(v, u1) . . . ∂vSak(v, uk) . . . SaM (v, uM )] . (5.9)

From the explicit form of Φk it is readily seen that δp ∼ sin2(2πβ). Hence, the correction

to the Bethe roots at this order is purely an effect of the β-deformation. It would be

interesting to see if this correction can also be derived from the thermodynamic Bethe

Ansatz approach, along the lines of [18–20].

Concluding, we see that the NLO wrapping correction to the energy splits into two

pieces

ENLO(β) = EN=4
LO + sin2(2πβ) E

(β)
NLO. (5.10)

The correction EN=4
LO has been computed in [8] and consequently we will only focus on

E
(β)
NLO.
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5.2 Results

By carefully computing the different terms discussed above, the first few next-to-leading

order wrapping corrections to the energy were found to be

M E
(β)
NLO/g

8

2 3
2ζ(3)−

87
32

4 125
144ζ(3)−

634475
497664

6 343
600ζ(3)−

195848051
259200000

8 579121
1411200ζ(3)−

849922576886413
1672847769600000

10 4952651
15876000ζ(3)−

187527445351389407
508127510016000000

12 569200957
2305195200 ζ(3)−

27728787085943160324263
98201332338704179200000

14 1372958223289
6817614804000 ζ(3)−

143089155610576965157748149667
638075677540603589134848000000

16 349224691793
2077749273600 ζ(3)−

284957306041515539714929299089
1555689270956138274462105600000

18 10723982580979
75058692508800 ζ(3)−

477279749685793028322161376621811
3120833078607178429774957117440000

The ζ(3) dependent part can easily be written in closed form as

4
(S1(M))2

M(M + 1)
ζ(3). (5.11)

The rational part, however, is more involved and so far we have not been able to fix its

form in terms of harmonic sums. However, a careful examination of the results seems to

indicate the following structure

Stransc=5

M(M + 1)
, (5.12)

where Stransc=5 stands for a combination of harmonic sums of transcendentality degree 5,

possibly with shifted arguments. Again one can notice that for large M this correction

vanishes.

6. Conclusions

In this paper we have derived the finite-size corrections for twist-2,3 operators in β-deformed

SYM theory, cf. equations (4.10) and (4.11). The obtained results respect the principle of

maximum transcendentality as well as reciprocity. Both wrapping corrections go to zero in

the limit M → ∞.

For twist-2 we also studied the pole structure and compared it against leading BFKL.

It would be interesting to find the next-to-leading prediction and compare it with our result

−
2 + 3ζ(2)

ω2
g6. (6.1)

Furthermore, it also would be important to find a closed formula for the NLO wrapping

corrections discussed in section 5, which would give more insight on the structure of finite-

size corrections in β-deformed theories.
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One of the nice features of the β-deformed theory is that wrapping corrections appear

at lower loop level than in the undeformed theory, which makes them more accessable and

gives hope that double wrapping is within reach. A better understanding of this would give

valuable insights in the precise nature of the integrable structures of β-deformed theories. It

would be also interesting to study more general deformations (γ-deformations) that might

exhibit novel structures in the finite-size spectrum.

Acknowledgments

We are grateful to G. Arutyunov, N. Beisert, V. Forini, A. Kotikov, L. Lipatov, C. Sieg

and S. van Tongeren for useful discussions and comments. T. Łukowski is supported by

a DFG grant in the framework of the SFB 647 “Raum - Zeit - Materie. Analytische und

Geometrische Strukturen” .

7. Appendices

7.1 Appendix A: Twisted transfer matrix

The eigenvalue of the twisted transfer matrix for an anti-symmetric bound state represen-

tation with the bound state number Q is given by the following formula, generalizing the

result of [48]

TQ,1(v | ~u) =
KII
∏

i=1

yi−x−

yi−x+

√

x+

x− + (7.1)

+

KII
∏

i=1

yi−x−

yi−x+

√

x+

x−

[

x++ 1
x+

−yi−
1
yi

x++ 1
x+

−yi−
1
yi

− 2iQ
g

] KI
∏

i=1

[

(x−−x−
i )(1−x−x+

i )

(x+−x−
i )(1−x+x+

i )
x+

x−

]

+

Q−1
∑

k=1

KII
∏

i=1

yi−x−

yi−x+

√

x+

x−

[

x++ 1
x+

−yi−
1
yi

x++ 1
x+

−yi−
1
yi

− 2ik
g

]







KI
∏

i=1

λ+(v, ui, k)+

KI
∏

i=1

λ−(v, ui, k)







−

Q−1
∑

k=0

KII
∏

i=1

yi−x−

yi−x+

√

x+

x−

[

x+− 1
x+

−yi−
1
yi

x+− 1
x+

−yi−
1
yi

− 2ik
g

] KI
∏

i=1

x+−x+
i

x+−x−
i

√

x−
i

x+
i

[

1−
2ik
g

v−ui+
i
g
(Q−1)

]

×

×







eiα
KIII
∏

i=1

wi−x+− 1
x+

+ i(2k−1)
g

wi−x+− 1
x+

+
i(2k+1)

g

+e−iα

KII
∏

i=1

yi+
1
yi

−x+− 1
x+

+ 2ik
g

yi+
1
yi

−x+− 1
x+

+
2i(k+1)

g

KIII
∏

i=1

wi−x+− 1
x+

+ i(2k+3)
g

wi−x+− 1
x+

+
i(2k+1)

g







.

Here the twist eiα enters only the last line. Eigenvalues are parametrized by solutions of

the auxiliary Bethe equations:

KI
∏

i=1

yk − x−i
yk − x+i

√

x+i
x−i

= eiα
KIII
∏

i=1

wi − yk −
1
yk

− i
g

wi − yk −
1
yk

+ i
g

, (7.2)

KII
∏

i=1

wk − yi −
1
yi

+ i
g

wk − yi −
1
yi

− i
g

= e2iα
KIII
∏

i=1,i 6=k

wk − wi +
2i
g

wk − wi −
2i
g

.
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In the formulas above the variable

v = x+ +
1

x+
−
i

g
Q = x− +

1

x−
+
i

g
Q

takes values in the mirror theory rapidity plane, i.e. x± = x(v ± i
g
Q) where x(v) is the

mirror theory x-function. As was mentioned above, uj take values in string theory u-plane,

and therefore x±j = xs(uj ±
i
g
) where xs(u) is the string theory x-function. These two

functions are given by

x(u) =
1

2
(u− i

√

4− u2), xs(u) =
u

2
(u+

√

1−
4

u2
). (7.3)

Finally, the quantities λ± are

λ±(v, ui, k) =
1

2

[

1−
(x−i x

+ − 1)(x+ − x+i )

(x−i − x+)(x+x+i − 1)
+

2ik

g

x+(x−i + x+i )

(x−i − x+)(x+x+i − 1)

±
ix+(x−i − x+i )

(x−i − x+)(x+x+i − 1)

√

4−

(

v −
i(2k −Q)

g

)2



 . (7.4)

The S-matrix in the string-mirror region S1∗Q
sl(2) is found in [49] (see also [9]) and it has

the following weak-coupling expansion

S1∗Q
sl(2)(u, v) = S0(u, v) + g2S2(u, v) + . . . ,

where

S0(u, v) = −

[

(v − u)2 + (Q+ 1)2
][

Q− 1 + i(v − u))
]

(u− i)2
[

Q− 1− i(v − u)
] . (7.5)

and

S2(u, v) = −S0(v, u)
2
[

2Q(u− i) + (u + i)(v2 +Q2 + 2v(u− i))
]

(v2 +Q2)(1 + u2)
+ (7.6)

S0(v, u)

1 + u2

[

4γ + ψ

(

1 +
Q+ iv

2

)

+ ψ

(

1−
Q+ iv

2

)

+ ψ

(

1 +
Q− iv

2

)

+ ψ

(

1−
Q− iv

2

)

]

.

These expressions are enough to build up the two leading terms in the weak-coupling ex-

pansion of the asymptotic function Y o
Q.
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