139 research outputs found

    Quantifying within-city inequalities in child mortality across neighbourhoods in Accra, Ghana: a Bayesian spatial analysis

    Get PDF
    Objective Countries in sub-Saharan Africa suffer the highest rates of child mortality worldwide. Urban areas tend to have lower mortality than rural areas, but these comparisons likely mask large within-city inequalities. We aimed to estimate rates of under-five mortality (U5M) at the neighbourhood level for Ghana’s Greater Accra Metropolitan Area (GAMA) and measure the extent of intraurban inequalities. Methods We accessed data on >700 000 women aged 25–49 years living in GAMA using the most recent Ghana census (2010). We summarised counts of child births and deaths by five-year age group of women and neighbourhood (n=406) and applied indirect demographic methods to convert the summaries to yearly probabilities of death before age five years. We fitted a Bayesian spatiotemporal model to the neighbourhood U5M probabilities to obtain estimates for the year 2010 and examined their correlations with indicators of neighbourhood living and socioeconomic conditions. Results U5M varied almost five-fold across neighbourhoods in GAMA in 2010, ranging from 28 (95% credible interval (CrI) 8 to 63) to 138 (95% CrI 111 to 167) deaths per 1000 live births. U5M was highest in neighbourhoods of the central urban core and industrial areas, with an average of 95 deaths per 1000 live births across these neighbourhoods. Peri-urban neighbourhoods performed better, on average, but rates varied more across neighbourhoods compared with neighbourhoods in the central urban areas. U5M was negatively correlated with multiple indicators of improved living and socioeconomic conditions among peri-urban neighbourhoods. Among urban neighbourhoods, correlations with these factors were weaker or, in some cases, reversed, including with median household consumption and women’s schooling. Conclusion Reducing child mortality in high-burden urban neighbourhoods in GAMA, where a substantial portion of the urban population resides, should be prioritised as part of continued efforts to meet the Sustainable Development Goal national target of less than 25 deaths per 1000 live births

    Dancing for Food in the Deep Sea: Bacterial Farming by a New Species of Yeti Crab

    Get PDF
    Vent and seep animals harness chemosynthetic energy to thrive far from the sun's energy. While symbiont-derived energy fuels many taxa, vent crustaceans have remained an enigma; these shrimps, crabs, and barnacles possess a phylogenetically distinct group of chemosynthetic bacterial epibionts, yet the role of these bacteria has remained unclear. We test whether a new species of Yeti crab, which we describe as Kiwa puravida n. sp, farms the epibiotic bacteria that it grows on its chelipeds (claws), chelipeds that the crab waves in fluid escaping from a deep-sea methane seep. Lipid and isotope analyses provide evidence that epibiotic bacteria are the crab's main food source and K. puravida n. sp. has highly-modified setae (hairs) on its 3rd maxilliped (a mouth appendage) which it uses to harvest these bacteria. The ε- and γ- proteobacteria that this methane-seep species farms are closely related to hydrothermal-vent decapod epibionts. We hypothesize that this species waves its arm in reducing fluid to increase the productivity of its epibionts by removing boundary layers which may otherwise limit carbon fixation. The discovery of this new species, only the second within a family described in 2005, stresses how much remains undiscovered on our continental margins

    Veratridine produces distinct calcium response profiles in mouse Dorsal Root Ganglia neurons.

    Get PDF
    Nociceptors are a subpopulation of dorsal root ganglia (DRG) neurons that detect noxious stimuli and signal pain. Veratridine (VTD) is a voltage-gated sodium channel (VGSC) modifier that is used as an "agonist" in functional screens for VGSC blockers. However, there is very little information on VTD response profiles in DRG neurons and how they relate to neuronal subtypes. Here we characterised VTD-induced calcium responses in cultured mouse DRG neurons. Our data shows that the heterogeneity of VTD responses reflects distinct subpopulations of sensory neurons. About 70% of DRG neurons respond to 30-100 μM VTD. We classified VTD responses into four profiles based upon their response shape. VTD response profiles differed in their frequency of occurrence and correlated with neuronal size. Furthermore, VTD response profiles correlated with responses to the algesic markers capsaicin, AITC and α, β-methylene ATP. Since VTD response profiles integrate the action of several classes of ion channels and exchangers, they could act as functional "reporters" for the constellation of ion channels/exchangers expressed in each sensory neuron. Therefore our findings are relevant to studies and screens using VTD to activate DRG neurons

    Effects of different lower-limb sensory stimulation strategies on postural regulation – A systematic review and meta-analysis

    Get PDF
    Systematic reviews of balance control have tended to only focus on the effects of single lower-limb stimulation strategies, and a current limitation is the lack of comparison between different relevant stimulation strategies. The aim of this systematic review and meta-analysis was to examine evidence of effects of different lower-limb sensory stimulation strategies on postural regulation and stability. Moderate- to high- pooled effect sizes (Unbiased (Hedges’ g) standardized mean differences (SMD) = 0.31 – 0.66) were observed with the addition of noise in a Stochastic Resonance Stimulation Strategy (SRSS), in three populations (i.e., healthy young adults, older adults, and individuals with lower-limb injuries), and under different task constraints (i.e., unipedal, bipedal, and eyes open). A Textured Material Stimulation Strategy (TMSS) enhanced postural control in the most challenging condition – eyes-closed on a stable surface (SMD = 0.61), and in older adults (SMD = 0.30). The Wearable Garments Stimulation Strategy (WGSS) showed no or adverse effects (SMD = -0.68 – 0.05) under all task constraints and in all populations, except in individuals with lower-limb injuries (SMD = 0.20). Results of our systematic review and meta-analysis revealed that future research could consider combining two or more stimulation strategies in intervention treatments for postural regulation and balance problems, depending on individual need

    Calmodulin is responsible for Ca2+-dependent regulation of TRPA1 channels

    Get PDF
    TRPA1 is a Ca2+-permeable ion channel involved in many sensory disorders such as pain, itch and neuropathy. Notably, the function of TRPA1 depends on Ca2+, with low Ca2+ potentiating and high Ca2+ inactivating TRPA1. However, it remains unknown how Ca2+ exerts such contrasting effects. Here, we show that Ca2+ regulates TRPA1 through calmodulin, which binds to TRPA1 in a Ca2+-dependent manner. Calmodulin binding enhanced TRPA1 sensitivity and Ca2+-evoked potentiation of TRPA1 at low Ca2+, but inhibited TRPA1 sensitivity and promoted TRPA1 desensitization at high Ca2+. Ca2+-dependent potentiation and inactivation of TRPA1 were selectively prevented by disrupting the interaction of the carboxy-lobe of calmodulin with a calmodulin-binding domain in the C-terminus of TRPA1. Calmodulin is thus a critical Ca2+ sensor enabling TRPA1 to respond to diverse Ca2+ signals distinctly

    Put My Skills to Use? Understanding the Joint Effect of Job Security and Skill Utilization on Job Satisfaction Between Skilled Migrants and Australian Born Workers in Australia

    Get PDF
    The topic of skilled migrants has gained importance in the past decade as they are increasingly becoming one of the main drivers for labor supply in developed countries like Australia. Although there is research on skilled migrants, most have been studied from the perspectives of (un)employment, wage and over-education. Some evidence suggests that skilled migrants are often less satisfied with their job compared to their local counterparts, yet little is known about why these differences exist. Using a nationally representative sample of Australian workers, we examine how two important job characteristics, job security and skill utilization, exert their differential interaction effect on job satisfaction for skilled migrants and Australian born workers. We found a differential moderation effect between job security and skill utilization for skilled migrants and Australian born workers. For skilled migrants, high job security did not lead to positive reaction (i.e., job satisfaction), as this effect was dependent on their skill utilization; while such moderation effect was not present for Australian born workers. This study highlights the need to take a more fine-tuned approach by understanding target sample groups (e.g., skilled migrants) when study the relationship between key job characteristics and job satisfaction. Furthermore, it highlights the importance for organizations to revisit their human resource management strategies and policies to recognize the needs for enhancing skill utilization for skilled migrants

    Genetic Evidence for Involvement of Neuronally Expressed S1P1 Receptor in Nociceptor Sensitization and Inflammatory Pain

    Get PDF
    Sphingosine-1-phosphate (S1P) is a key regulator of immune response. Immune cells, epithelia and blood cells generate high levels of S1P in inflamed tissue. However, it is not known if S1P acts on the endings of nociceptive neurons, thereby contributing to the generation of inflammatory pain. We found that the S1P1 receptor for S1P is expressed in subpopulations of sensory neurons including nociceptors. Both S1P and agonists at the S1P1 receptor induced hypersensitivity to noxious thermal stimulation in vitro and in vivo. S1P-induced hypersensitivity was strongly attenuated in mice lacking TRPV1 channels. S1P and inflammation-induced hypersensitivity was significantly reduced in mice with a conditional nociceptor-specific deletion of the S1P1 receptor. Our data show that neuronally expressed S1P1 receptors play a significant role in regulating nociceptor function and that S1P/S1P1 signaling may be a key player in the onset of thermal hypersensitivity and hyperalgesia associated with inflammation

    ERK5 MAP Kinase Regulates Neurogenin1 during Cortical Neurogenesis

    Get PDF
    The commitment of multi-potent cortical progenitors to a neuronal fate depends on the transient induction of the basic-helix-loop-helix (bHLH) family of transcription factors including Neurogenin 1 (Neurog1). Previous studies have focused on mechanisms that control the expression of these proteins while little is known about whether their pro-neural activities can be regulated by kinase signaling pathways. Using primary cultures and ex vivo slice cultures, here we report that both the transcriptional and pro-neural activities of Neurog1 are regulated by extracellular signal-regulated kinase (ERK) 5 signaling in cortical progenitors. Activation of ERK5 potentiated, while blocking ERK5 inhibited Neurog1-induced neurogenesis. Furthermore, endogenous ERK5 activity was required for Neurog1-initiated transcription. Interestingly, ERK5 activation was sufficient to induce Neurog1 phosphorylation and ERK5 directly phosphorylated Neurog1 in vitro. We identified S179/S208 as putative ERK5 phosphorylation sites in Neurog1. Mutations of S179/S208 to alanines inhibited the transcriptional and pro-neural activities of Neurog1. Our data identify ERK5 phosphorylation of Neurog1 as a novel mechanism regulating neuronal fate commitment of cortical progenitors

    The Genome Sequence of the Leaf-Cutter Ant Atta cephalotes Reveals Insights into Its Obligate Symbiotic Lifestyle

    Get PDF
    Leaf-cutter ants are one of the most important herbivorous insects in the Neotropics, harvesting vast quantities of fresh leaf material. The ants use leaves to cultivate a fungus that serves as the colony's primary food source. This obligate ant-fungus mutualism is one of the few occurrences of farming by non-humans and likely facilitated the formation of their massive colonies. Mature leaf-cutter ant colonies contain millions of workers ranging in size from small garden tenders to large soldiers, resulting in one of the most complex polymorphic caste systems within ants. To begin uncovering the genomic underpinnings of this system, we sequenced the genome of Atta cephalotes using 454 pyrosequencing. One prediction from this ant's lifestyle is that it has undergone genetic modifications that reflect its obligate dependence on the fungus for nutrients. Analysis of this genome sequence is consistent with this hypothesis, as we find evidence for reductions in genes related to nutrient acquisition. These include extensive reductions in serine proteases (which are likely unnecessary because proteolysis is not a primary mechanism used to process nutrients obtained from the fungus), a loss of genes involved in arginine biosynthesis (suggesting that this amino acid is obtained from the fungus), and the absence of a hexamerin (which sequesters amino acids during larval development in other insects). Following recent reports of genome sequences from other insects that engage in symbioses with beneficial microbes, the A. cephalotes genome provides new insights into the symbiotic lifestyle of this ant and advances our understanding of host–microbe symbioses
    corecore